

Plano de Ensino (GR-65)

Filtrado por: PlnEnsino = 278 Ordenado por: nenhuma ordem 13/09/2024 09:51:23 Página 1 de 2

PLANO DE ENSINO

Campus funcionamento: Toledo

Centro responsável: Centro de Engenharias e Ciências Exatas

Programa: Recursos Pesqueiros e Engenharia de Pesca

Carga horária: 30 Turno: Integral

Creditos: 2 Nível:

Data de Fechamento do PE: 01/08/2024 Prd. Letivo: 2024/2

Aprovação: 23/07/2024 Ata 03/2024-PREP, 23/07/2024

Homologação (Conselho de Centro): 31/07/2024 Ata nº 07/2024-CC CECE de 31/07/2024

Disciplina

Impactos da aquicultura sobre a biodiversidade aquática

Ementa

Resolução: Res. 036/2019-CEPE

Estudar e compreender a conceituação de biodiversidade, seus princípios básicos e importância para conservação dos ecossistemas aquáticos, enfatizando o funcionamento e sistemas naturais e impactados sob influência da atividade aquícola.

Objetivo geral

Promover a melhor compreensão dos impactos da atividade aquícola sobre a biodiversidade aquática, através do reconhecimento dos potenciais impactos positivos e negativos da atividade aquícola sobre a biodiversidade aquática continental, bem como ações de manejo que possibilitem a mitigação dos impactos negativos e potencialização da atividade dentro dos princípios da sustentabilidade.

Objetivos Específicos

Promover a melhor compreensão dos impactos da atividade aquícola sobre a biodiversidade aquática, através do reconhecimento dos potenciais impactos positivos e negativos da atividade aquícola sobre a biodiversidade aquática continental, bem como ações de manejo que possibilitem a mitigação dos impactos negativos e potencialização da atividade dentro dos princípios da sustentabilidade.

Metodologia

A disciplina será desenvolvida utilizando ferramentas de ensino on-line e realizada de forma síncrona e assíncrona. Envolverá vídeo-aulas explicativas, vídeos complementares, estudo dirigido a partir de artigos científicos, seminários e debates em fóruns de discussões referentes a cada unidade didática. Será utilizado o ambiente virtual Google Classroom para o acesso aos conteúdos e atividades da disciplina, assim como aplicativos disponíveis pela Platarfoma Office 365, como o Microsoft Forms, Teams e Onedrive.

Atividades Práticas

Não se aplica

Avaliação

A avaliação será semanal através de questionários, participação em fóruns de discussão e seminários, sendo a média final determinada pela média aritmética de todas as atividades desenvolvidas ao longo da disciplina.

PLANO DE ENSINO

Conteúdo Programático	
Título	C/H
Disponibilidade de recursos hídricos	5
Disponibilidade de recursos hídricos/	
Ecossistemas Aquáticos	5
Ecossistemas Aquáticos	
Impactos sobre o meio físico	5
Impactos sobre o meio físico	
Impactos sobre o meio químico	5
Impactos sobre o meio químico	
Impactos sobre o meio biológico	5
Impactos sobre o meio biológico	
Aquicultura e Sustentabilidade.	5
Aquicultura e Sustentabilidade.	
bibliografia básica	
CHUNLONG LIU, LISE COMTE, WEIWEI XIAN, YIFENG CHEN AND JULIAN D. OLDEN. 2019. Current and	
projected future risks of freshwater fish invasions in China. Ecography 42:1-10. doi: 10.1111/ecog.04665	
GARCIA, D.; MAGALHÃES, A.; VITULE, J.S.; CASIMIRO, A. C.; LIMA-JUNIOR, D & CUNICO, A.M.; BRITO,	
M.; PETRERE, M.; AGOSTINHO, A. A.; ORSI, M. 2018. The same old mistakes in aquaculture: the newly available striped catfish Pangasianodon hypophthalmus is on its way to putting Brazilian freshwater	
ecosystems at risk. Biodiversity and Conservation. 1-14. 10.1007/s10531-018-1603	
MAXWELL, SEAN & FULLER, RICHARD & BROOKS, THOMAS & WATSON, JAMES.2016. Biodiversity: The	
ravages of guns, nets and bulldozers. Nature. 536. 143-145. 10.1038/536143a.	
NOBILE, A. B., A. M. CUNICO, J. R. S. VITULE, J. QUEIROZ, A. P. VIDOTTO-MAGNONI, D. A. Z. GARCIA,	
M. L. ORSI, F. P. LIMA, A. A. ACOSTA, R. J. SILVA, F. D. PRADO, F. PORTO-FORESTI, H. BRANDÃO, F. FORESTI, C. OLIVEIRA & I. P. RAMOS, 2020. Status and recommendations for sustainable freshwater	
aquaculture in Brazil. Reviews in Aquaculture. 12(3): 1495-1517 https://doi.org/10.1111/raq.12393.	
PELICICE, F.M.; AZEVEDO-SANTOS, V.M.; VITULE, J.R.S.; ORSI, M.L.; LIMA JUNIOR, D.P.; MAGALHÃES,	
A.L.B.; POMPEU, P.S.; PETRERE JUNIOR, M.; AGOSTINHO, A.A. 2017 Neotropical freshwater fishes	
imperilled by unsustainable policies. Fish and Fisheries, 1(1): 1-15.	
PEREIRA, L.S.; DEMÉTRIO, J.A.; CUNICO, A.M.; LATINI, J.D.; GOMES, L.C.; AGOSTINHO, A.A. 2019.	
Cage aquaculture in Neotropical waters promotes attraction and aggregation of fish. Aquaculture Research, doi 10.1111/are.14244	
REID, A. J., CARLSON, A. K., CREED, I. F., ELIASON, E. J., GELL, P. A., JOHNSON, P. T. J., COOKE, S. J.	
2018. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological	
Reviews., 94, 849–873. https://doi.org/10.1111/brv.12480	
REIS RE, ALBERT JS, DI DARIO F, MINCARONE MM, PETRY P, ROCHA LA. 2016. Fish biodiversity and	
conservation in South America. J Fish Biol 89:12–47. https://doi.org/10.1111/jfb.13016	
RENNIE, M.D.; KENNEDY, P.J.; MILLS, K.H.; RODGERS, C.M.C; CHARLES, C.; HRENCHUK, L.E.;	
CHALANCHUK, S.; BLANCHFIELD, P.J.; PATERSON, M.J.; PODEMSKI, C.L. 2018. Impacts of freshwater aquaculture on fish communities: A whole-ecosystem experimental approach. Freshwater Biology, doi	
10.1111/fwb.13269.	
RICO, ANDREU & JACOBS, RIANNE & VAN DEN BRINK, PAUL & TELLO, ALFREDO. 2017. A probabilistic	
approach to assess antibiotic resistance development risks in environmental compartments and its application	
to an intensive aquaculture production scenario. Environmental pollution (Barking, Essex : 1987). 231. 918-	
928. 10.1016/j.envpol.2017.08.079.	
THU HANG PHAM, THI & ROSSI, PIERRE & DANG KHOA DINH, HOANG & TU ANH PHAM, NGOC & ANH TRAN, PHUONG & THI KHAI MUI HO, TO & TUC DINH, QUOC & DE ALENCASTRO, LUIZ. 2018. Analysis	
of antibiotic multi-resistant bacteria and resistance genes in the effluent of an intensive shrimp farm (Long An,	
Vietnam). Journal of environmental management. 214. 149-156. 10.1016/j.jenvman.2018.02.089.	