Anexo II – Resolução nº 133/2003-CEPE

UNIVERSIDADE ESTADUAL DO OESTE DO PARANÁ PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

PLANO DE ENSINO - PERÍODO LETIVO/ANO 2021

Programa: PPGComp

Área de Concentração: Ciência da Computação

Mestrado (x) Doutorado ()

Centro: CCET

Campus: Cascavel

DISCIPLINA

Código			Nome	Carga horária				
						AT ¹	AP ²	Total
	Introdução Paralelos	a	Arquiteturas	e	Algoritmos	60		60

⁽¹ Aula Teórica; ² Aula Prática)

Ementa

Arquiteturas paralelas: taxonomias, computadores de memória compartilhada e distribuída; Desenvolvimento de Programas Paralelos em Arquiteturas de Memória Compartilhada e Distribuída; GPGPU; Avaliação de Desempenho de Programas Paralelos.

Objetivos

Apresentar uma visão geral dos principais modelos de arquiteturas paralelas;

Capacitar o acadêmico com os conhecimentos sobre as principais questões envolvidas no desenvolvimento de programas paralelos;

Introduzir os principais modelos de programação paralela para arquiteturas de memória compartilhada, memória distribuída e GPUs.

Conteúdo Programático

Parte I: Introdução à Computação Paralela e de Alto Desempenho

Parte II: Introdução às Arquiteturas Paralelas

- 1. Introdução e Conceitos básicos
- 2. Arquiteturas de memória compartilhada
- 3. Arquiteturas de memória distribuída
- 4. Arquiteturas Vetoriais e GPUs
- 5. Visão Geral do Supercomputador Santos Dumont (LNCC)

Parte III: Modelos de Programação Paralela

- 1. Programação em memória compartilhada: OpenMP
- 2. Programação em memória distribuída: MPI
- 3. Programação em GPUs: CUDA/OpenACC

Parte IV: Projeto de Aplicações Paralelas

- 1. Entendendo o código sequencial
- 2. Detectando o paralelismo
- 3. Paradigmas e Modelos de aplicações
- 4. Metodologias de projeto
 - PCAM
 - Patterns para Programas Paralelos

Parte V: Análise de Desempenho

1. Métricas de desempenho para programas paralelos

Tempo de Execução

Speedup

Eficiência

Escalabilidade

- 2. Lei de Amdahl e Lei de Gustafson
- 3. Perfilação de Aplicações Paralelas

Parte VI: Tópicos Especiais em Programação Paralela

- 1. Balanceamento de carga
- 2. Tolerância a Falhas
- 3. Processamento de alto desempenho na nuvem
- 4. Outros tópicos relacionados

Atividades Práticas – grupos de 16 alunos

Serão realizadas atividades práticas no Supercomputador S. Dumont (LNCC).

Metodologia

Aulas expositivas, laboratórios práticos para resolução de exercícios de programação, leitura e discussão de artigos.

Avaliação

(critérios, mecanismos, instrumentos e periodicidade)

Trabalho prático envolvendo a paralelização de problemas computacionais, apresentando a metodologia utilizada, bem como, resultados e análise de desempenho. Deverá ser entregue um relatório em formato de artigo e apresentação. Peso 70%.

Prova escrita. Peso 30%.

Bibliografia básica

PACHECO, P. S. An Introduction to Parallel Programming. Morgan Kaufmann. 2011.

WILKINSON, B.; ALLEN, M.: Parallel Programming Techniques and Applications Using Networked Workstations And Parallel Computers. Pearson. 2004.

STALLINGS, W. Computer organization and architecture: Designing for performance. Pearson, 2016.

CHAPMAN, B.; JOST, G. VAN DER PAS, R. Using OpenMP: Portable Shared Memory Parallel Programming. The MIT Press. 2008.

MCCOOL, M. ROBISON, A. D., REINDERS, J. Structured Parallel Programming: Patterns for Efficient Computation. Elsevier. 2012.

CZARNUL, P. Parallel Programming for Modern High Performance Computing Systems. CRC Press. 2018.

Bibliografia complementar

HENNESSY, J.L.; PATTERSON, D.A. Computer Architecture, Fifth Edition: A Quantitative Approach (5th ed.). Morgan Kaufmann Publishers. 2011.

GEBALI, F. Algorithms and Parallel Computing, Wiley. 2011.

Artigos e Materiais disponibilizados na Internet.

Docente

Guilherme Galante Edson Tavares de Camargo

Data 06/07/2021

Assinatura do docente responsável pela disciplina

		Colegia	ado do Progi	rama (ap i	rovaçao)		
Ata nº , de	1	/					
, uc	,	,	•				
Coordenador:							
						assinatura	
		G 11	1 1 0	41 1	~		
		Consel	ho de Centro	o (nomo l	ogaçao)		
Ata de nº , de	/	/					
Diretor de Centro:							
						assinatura	
Encaminhada cópia a	à Secr	etaria Ac	adêmica em	n: /	/ .		
					Nome	/assinatura	_