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1. Introduction 
 

The growing population, demanding large amounts of food, and 

environmental issues, for both the conservation of the environment itself and for 

the more rational use of all elements of the food production chain, are motivating 

producers to make the most optimized use of the land and its inputs (Baudron 

and Giller 2014). Thus, producers need to make the most optimized use of the 

land and its inputs. Precision agriculture (PA) is a management system that aims 

to optimize the use of agricultural inputs, meeting this need for more profitability 

with less environmental damage. 

Climatic, topographic, and biological variations, both in spatial and 

temporal domains, are factors that induce yield variations in the field. The 

premise of PA is to know these variations and provide support for punctual and 

localized crop management. Several tools can be used to support this. Among 

them, thematic maps and management zones stand out. 

In addition to representing the terrain, thematic maps (TMs) are used to 

illustrate themes. Generally, TMs are used to identify different cartographic 

representations, and they represent not only the land but also associated 

characteristics. The development of TMs is linked to data collection, analysis, 

interpretation, and representation of the information on a map. They facilitate the 

identification of similarities and enable the visualization of spatial correlations. 

Based on samples collected before, during e after the life period of the culture, 

TMs are usually generated to identify the variability of properties of the 

topography, soil, and plants and compare with the yield. However, first, it is 

necessary to interpolate the data into a dense and regular grid to provide values 

for locations that were not sampled. This task is performed with the aid of 

interpolation methods, being kriging the most used interpolation method. 

Timlin et al. (1998) showed that yield and other field attributes presenting 

spatial variability could be effectively used in site-specific management (precision 

agriculture, PA) to increase fertilizer efficiency and environmental sustainability, 

although it is often costly (Khosla et al., 2008). Typically, soil samples are 

analyzed to determine soil nutrient levels. Sampling, therefore, should be dense 

enough to allow nutrient variability determination in the soil so that fertilizers can 
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be used profitably and in an environmentally sustainable way (Ferguson and 

Hergert, 2009; Franzen et al., 2002). Time and available budget for sampling 

should be considered to determine the right soil sampling density in an area.  

Traditional farm management uses a whole-field approach, in which each 

field is treated as a homogeneous area (Srinivasan, 2006), and the variability in 

soil, topography, local weather conditions, and land use is not considered (Nawar 

et al., 2017). In this management, inputs are applied uniformly across the field, 

and it is attractive to growers because it is easy and speedy. However, with a 

site-specific input application is possible to achieve more economical and 

environmentally-friendly management. PA uses this kind of application, and it is 

defined as a management strategy that gathers, processes, and analyzes 

temporal, spatial, and individual data and combines it with other information to 

support management decisions according to estimated variability for improved 

resource use efficiency, productivity, quality, profitability and sustainability of 

agricultural production (ISPA, 2019).   

One practical way to apply PA in a field is to divide it into homogeneous 

areas, called management zones (MZs). Each zone is a subregion of a field that 

expresses a functionally homogeneous combination of yield-limiting factors for 

which a single rate of a specific crop input is appropriate (Doerge, 2000; Moral et 

al., 2010; Moshia et al., 2014; Bobryk et al., 2016). Although variable-rate 

application machines could be used, MZs usually involve conventional 

machinery. After delineation, MZs can be used in smart sampling, where one-

smart composite sampling is obtained per zone to delineate the field soil 

variability. This approach is likely to reduce laboratory costs while maintaining the 

level of reliability (Ferguson and Hergert, 2009; Mallarino and Wittry, 2004). 

Smart sampling has been shown to improve nutrient efficiency use while keeping 

or increasing the yield and potentially reducing the nutrient overloading into the 

environment (Moshia et al., 2014; Khosla et al., 2002). Many studies related to 

the sampling density have been performed (Journel and Huijbregts, 1978; 

Demattê et al., 2014; Wollenhaupt, Wolkowski, and Clayton, 1994; Franzen et 

al., 2002; Ferguson and Hergert, 2009; Doerge, 2000), resulting in a suggested 

minimum density of one sample per ha (Ferguson and Hergert, 2009) to 

2.5 samples per ha (Journel and Huijbregts, 1978; Doerge, 2000), which should 
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be composed of at least eight individual samples (Wollenhaupt, Wolkowski, and 

Clayton, 1994). 

Several kinds of sample data can be used to delineate MZs; however, to 

produce more stable MZs, it is advantageous to use a set of multivariate attributes 

data that do not vary significantly over time (topography, electrical conductivity, 

soil physical properties) and that are correlated with target variable (usually yield) 

(Buttafuoco et al., 2010; Doerge, 2000). That is important because, usually, we 

want to use the MZs for many years. Nevertheless, there are other situations in 

which the purpose is to use immediately and just once MZs. It is the case of MZs 

for agrochemical applications.  

 The use of MZs is economically and productively viable in several 

situations, showing results of cost reduction, increase in yield, and improvement 

of product quality parameters (Kyaw et al. 2008; Robertson et al. 2008; Velandia 

et al. 2008; Vitharana et al. 2008b; Roberts et al. 2012; Li et al. 2013; Bernardi et 

al. 2018; Schwalbert et al. 2018; Whetton et al. 2018). Thus, its application often 

leads to an increase in profitability and reduction of costs with inputs, 

consequently leading to fewer environmental impacts. 

However, there are still several outstanding issues, such as: (i) what is the 

ideal protocol for the delineation of MZs, (ii) what is the best delineation algorithm, 

(iii) which software allows you to handle all the stages in the process. Because of 

this, the task of defining ideal MZs is still challenging. 

This book is intended to assist in understanding both tools, TMs and MZs. 

The objective is to define them and present an ideal protocol for their 

development, with examples in both cases. This book is divided into two main 

parts: Chapter 2 presents the TMs, with their characteristics, importance, usage, 

definitions for the best choice of color scheme, and several examples. Chapter 3 

presents the MZs. As the delineation of MZs presents several possibilities, the 

definitions, protocols, economic return, and most common options and software 

used are based on a systematic study of the literature, constituted from the union 

of systematic literature mapping and snowball techniques. This ensures that the 

main procedures and trends are achieved, gathering an extensive summary of 

classic works and the most recent ones. At the end of this chapter, there are also 

several examples of MZs to offer the reader various possibilities.  

12



2. Thematic Maps 
 

 

Maps that represent the land and a topic associated with it are called 

thematic maps (TMs), and they aim to inform through graphic symbols where a 

specific geographical phenomenon occurs. TM development is linked to data 

collection, analysis, interpretation, and representation of the information on a 

map, facilitating the identification of similarities and enabling spatial correlations 

visualization. The information presented in TMs may include, for example, 

maximum temperature or maximum precipitation at a given date, amount of 

calcium and potassium in the soil, and soybean yield at a given agricultural area. 

Fig. 1 shows a TM of world apple production in 2009. 

 

 

Fig. 1. Thematic map of world apple production in 2009 

Source: Carvalho (2011). 

 

One specific case of TMs is contour maps built by connecting points of the 

same value and applying them to geographical phenomena that show continuity 

in the geographic space. Another is choropleth maps that use color to show 

ranges of a specific variable within a defined geographic area. Contour and 

choropleth maps can be built from categorical data (elevation, temperature, 

precipitation, humidity, and atmospheric pressure) or relative data (density, 
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percentages, and indexes). Fig. 2 shows examples of contour and choropleth 

maps. 

 

  

a) Elevation b) Elevation 

  

c) sand d) Clay 

Fig. 2. Examples of contour map: a) elevation (m), and choropleth maps: b) 
elevation (m), c) sand (%), d) Clay (%) 

 

To construct TMs about attributes collected in agriculture fields, it is 

necessary to follow a protocol like the one presented in Fig. 3. 
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Fig. 3. Flowchart of the typical protocol to create a thematic map 

 

I. Selection of the coordinate system - A geographic information system 

(GIS Software) is designed to store, retrieve, manage, display, and analyze all 

types of geographic and spatial data. To construct 2-D TMs is necessary a GIS 

software, and a file with at least three columns representing the X (longitude) and 

Y (latitude) coordinates and the value of the measured attribute (for 3-D, we need 

one more coordinate, Z (altitude)).  The most typical coordinate systems are the 

geographic coordinate system (GCS) and universal transverse Mercator (UTM). 

The GCS is associated with a model of the Earth shape (reference ellipsoid) 

called a datum. The datum WGS84 (World Geodetic System 84) is most 

commonly used. The units are in degrees, minutes, and seconds with GCS and 

meters for UTM. 

II. Data normalization - The normalization of variables is interesting when 

one wants to construct and compare TMs of a variable that has been measured 

several times. This is the case of the yield of an area measured for several years 

and/or with several crops. The most common methods are the standard score, 

range, and mean (Schenatto et al., 2017b). 

III. Exploratory data analysis (EDA) - is the summarization of the data 

set through their main characteristics. EDA employs a variety of techniques 

15



(mostly graphical) to maximize insight into a data set; uncover underlying 

structure; extract important variables; detect inliers and outliers (atypical values) 

and anomalies; test underlying assumptions; develop parsimonious models; and 

determine optimal factor settings (NIST/SEMATECH, 2013). When constructing 

TMs, the essential use of EDA is to detect and remove outliers. According to 

Amidan et al. (2005), data outliers can have a significant impact upon data-driven 

decisions, and in many cases, they do not reflect the true nature of the data and, 

hence, should not be included in the analyses. They proposed an outlier detection 

method using Chebyshev’s inequality to form a data-driven outlier detection 

method that is not dependent upon knowing the data distribution. According to 

Córdoba et al. (2016), the values outside the mean ± 3 SD (standard deviation) 

are identified as outliers and should be removed (also Haghverdi et al., 2015). 

They remarked that even though real data could belong to this interval, the upper 

and lower limits should be modified to obtain robust variance estimators. Also 

necessary is the removal of inliers, data that differ significantly from their 

neighborhood but lie within the variation range of the data set (Córdoba et al., 

2016). For yield data obtained with yield monitor, additional care should be taken. 

Many approaches for yield data cleaning were already being proposed (like by 

Blackmore and Moore, 1999) to eliminate errors associated with unknown header 

width, combine filling/emptying times, the time lag of grain through the combine, 

positional errors, rapid velocity changes, and others (Sudduth and Drummond, 

2007). Vega et al. (2019) proposed a protocol for automating error removal from 

yield maps divided into two steps: (1) removal of yield data with values equal to 

zero, removal edge values and potential end-of-field yield monitor errors, and 

removal of yield data that are outside the mean ± 3 SD; and (2) use of the local 

Moran's spatial autocorrelation index and the Moran's plot to identify and remove 

data that are inconsistent with their neighbor points. The protocol was evaluated 

on 595 real yield datasets with good results and can be used with other geo-

referenced variables in precision agriculture. 

VI. Data interpolation - The sample data are usually interpolated in a 

dense and regular grid to generate TMs and MZs that are continuous and 

smooth. This task is performed with the aid of interpolation methods. The inverse 

distance weighting (IDW) and kriging are the interpolation methods commonly 

used in PA. They are differentiated by how the weights are assigned to the 

16



different samples, influencing the estimated values (Reza et al., 2010). Various 

software packages are available for performing data interpolation, such as Surfer 

(Golden Software, LLC) and ArcGIS (ESRI, Environmental Systems Research 

Institute).  

Kriging is considered the best method of data interpolation when data 

present spatial dependence. Nevertheless, first, the appropriated geostatistical 

model for the data needs to be found through cross-validation. This technique 

compares theoretical values with those obtained from sampling and then 

analyzing the estimation errors and choosing the best model (Arlot and Celisse, 

2010; Kohavi, 1995). Faraco et al. (2008) considered cross-validation a better 

way to evaluate the adjustment of theoretical spatial models than Akaike’s and 

Filiben’s information criteria and the maximum logarithm value of the likelihood 

function. With cross-validation are calculated the following measures: the 

average error (AE), the reduced average error (𝑅𝐸̅̅ ̅̅ ), the standard deviation of the 

average error (SAE), and the standard deviation of the reduced error (SRE) 

(Cressie, 1993; McBratney and Webster, 1986). According to non-

tendentiousness criteria, to choose the best-adjusted model, values for AE and 

𝑅𝐸̅̅ ̅̅  should be as close to zero as possible, the value of SAE should be as small 

as possible, and the value of SRE should be close to 1 (Cressie, 1993; McBratney 

and Webster, 1986). Because cross-validation makes it possible for ambiguous 

situations to occur, Souza et al. (2016) proposed the error comparison index 

(ECI, Equation 1). As lower ECI is, the better the semivariogram is.  

 

𝐸𝐶𝐼𝑖 =
𝐴𝐵𝑆(𝑅𝐸̅̅ ̅̅ )𝑖

max |𝑖=1
𝑗 [𝐴𝐵𝑆(𝑅𝐸̅̅ ̅̅ )]

+
𝐴𝐵𝑆(𝑆𝑅𝐸 − 1)𝑖

max |𝑖=1
𝑗 [𝐴𝐵𝑆(𝑆𝑅𝐸 − 1)]

           (1) 

 

where 𝐸𝐶𝐼𝑖 is the error comparison index for model i, 𝐴𝐵𝑆(𝑅𝐸̅̅ ̅̅ )is the module 

value of the reduced average error, andmax |𝑖=1
𝑗

is the highest value among the 

compared j semivariograms. 

One recurrent question when interpolating agricultural data is choosing 

between deterministic and stochastic methods of interpolation. Bier and Souza 

(2017) proposed the interpolation selection index (ISI, Equation 2), which 

assumes a lower value as better the interpolator is. 
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𝐼𝑆𝐼 = {
𝐴𝐵𝑆(𝐴𝐸)

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝐴𝐵𝑆(𝐴𝐸)]

+
[𝑆𝐴𝐸 −𝑚𝑖𝑛 |

𝑗
𝑖 = 1

𝑆𝐴𝐸]

𝑚𝑎𝑥 |
𝑗

𝑖 = 1
[𝐴𝐵𝑆(𝑆𝐴𝐸)]

}           (2) 

 

where𝑛 is the number of data; 𝐴𝐵𝑆(𝐴𝐸) is the module value of the average error 

of the crossed validation; 𝑚𝑖𝑛|𝑖=1
𝑗

 is the lowest value found between the 

compared j models; 𝑚𝑎𝑥|𝑖=1
𝑗

 is the highest value found between the compared j 

models. 

V. Creation of TMs – after the data interpolation, to draw TMs with our 

data, we must decide both the number of classes and the method for breaking 

the data into ranges. The goal is to group similar observations and split apart 

substantially different observations (Indiemapper, 2016). The first thing to do is 

looking at the histogram (or scatterplot) to determine the 'form' of your 

observations.  This critical step of map creation and how we do that can 

dramatically change the look of the map, and thus, its message, and it is one of 

the easiest ways to "lie with maps". There is no escape from the cartographic 

paradox: to present a useful and truthful picture, an accurate map must tell white 

lies (Monmonier, 1996). They are many ways to classify data systematically and 

each GIS software will offer some of them. The most popular are (Indiemapper, 

2016; ESRI ArcGIS 9, Help Menu, Standard Classification Schemes): 

• Manual interval: we set one or all of the class breaks manually. We 

use this method when others do not give a good solution. A good way 

is to start with one of the standard classifications and make 

adjustments as needed; 

• Equal interval: we divide the data into equal size classes, and it works 

well on data that is generally spread across the entire range. This 

classification should be avoided if data are skewed to one end or there 

are one or two large outlier values; 

• Quantile: we divide into classes with an equal number of features, and 

it works well on data that is linearly distributed across the entire range. 

Nevertheless, the resulting map can be misleading, with similar 
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features placed in adjacent classes, or widely different values put in 

the same class;  

• Standard deviation: it a particular case of the equal interval where the 

class size is a multiple of standard deviation. It works well with data 

that has a normal distribution. It is god for seeing which features are 

above or below an average value. 

The number of data classes is also an essential part of map design. 

Increasing the number of data classes will result in a more revealing map but 

require more colors. Generally, it is advised not to exceed seven classes.   

Examples of choropleth maps are presented in Fig. 4. Each case presents 

the map using five classes, classified by equal interval, quantile, and standard 

deviation, and its corresponding histogram. For example, in pH (Fig. 4a), we have 

an attribute with a distribution close to normal, and the equal interval classification 

looks like the best choice, but the standard deviation classification is also good. 

However, with the map of aluminum (Fig. 4b), the distribution is moderately 

skewed right, and then the quantile is visually the best option.  

After we selected how to classify the data, choosing an effective color 

scheme for the TM is crucial. A good color scheme needs to be attractive but also 

support the map's message and be appropriately matched to the nature of the 

data (Harrower and Brewer, 2003), being necessary to choose three dimensions 

of color: hue, lightness, and saturation. There are three kinds of color scheme: 

nominal/qualitative (unorderable data, like land use, Fig. 5a): different hues that 

keep lightness and saturation constant should be used; sequential (orderable, 

like numerical data (or low/med/high), like yield, Fig. 5b): single or multihue with 

different lightness/saturation should be used; diverging (when there is a mid-

point, like zero, or if we want to compare with an average, like profit, Fig. 5c). 

Harrower and Brewer (2003) designed an online tool “ColorBrewer.org” to help 

users select appropriate color schemes for their specific mapping needs. Fig. 6 

presents some practical examples of the application of the color schemes. 
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a) Ph    

  

 

 

 

b) Aluminum   

Fig. 4. Thematic Maps for pH (a), and aluminium (b) using three forms of 

classification (equal interval, quantile, and standard deviation) 

 

 

  

a) Nominal Color Scheme            b) Sequential Color Scheme        c) Diverging Color Scheme  

Fig. 5. Three kinds of color scheme: nominal/qualitative (a), sequential (b), and 

diverging (c)  
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                      a.1)                                                    a.2)                                                            a.3) 

a) Nominal Color Scheme: maps with two (a.1), three (a.2), and four (a.3) management zones (MZs) 

 

 

 

 

b.1) Altitude 

 

b.2) Yield 

 

 

 

 

 

b.3) SPR 0.0 -0.1 m 

b) - Sequential Color Scheme: maps of altitude (b.1), yield (b.2), and Soil Penetration Resistance – SPR 

(b.3) 

 

 
 

 

 

                   c.1)                                                        c.2)                                                             c.3)                        

c) - Diverging Color Scheme – Profit Maps (US$ ha-1) 

Fig. 6. Examples of color scheme: nominal/qualitative (a), sequential (b), and 

diverging (c) 
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Contour maps using a continuous scale - despite being most common 

using a discrete scale, some people prefer continuous scale. The problem with a 

color ramp is that perception of color intensity is not linear, and consequently, the 

user could make a false assumption about what data value it represented. Basso 

et al. (2009), studying the effects of landscape position and rainfall on spatial 

variability of wheat yield and protein on a 10-ha field with the rolling landscape of 

Southern Italy, presented an interpolated map of wheat yield (Fig. 7) using a 

continuous scale. 

 

 

Fig. 7. 3D interpolated map of wheat yield (kg ha-1) for 2003 

Source: Basso et al. (2009). 

 

 

 

2.1. Examples of thematic maps 

 

 

In order to demonstrate several situations in which TMs can be used, in 

the sequence several examples of TMs will be presented, together with a brief 

discussion of the data that originated them. 

 

 

2.1.1 Yield, protein, and oil content maps 

 

Silva (2016) carried out a spatial analysis of quality parameters (protein 

and oil content) for soybean and corn in two experimental areas (field A - 10.0 ha, 
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and field B - 23.8 ha) and two agricultural years (2012/2013 and 2013/2014.). Fig. 

8 shows the thematic maps of soybean yield and the corresponding protein and 

oil content. Statistical analysis using Moran’s bivariate spatial autocorrelation 

statistic showed that soybean protein and oil content were inversely correlated 

for both experimental areas and agronomic years (2012/13 and 2013/14). It can 

be highlighted how important it is to choose the right color scheme. In this case, 

variables are quantitative, and therefore, the scheme should be sequential 

(singlehue with different lightness/saturation). Only to compare, the same 

variable is presented using a nominal color scheme, and map readability is 

reduced.   
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Yield 

 

Protein 

 

Oil 

content 

 

  

Fig. 8. Thematic maps of soybean yield and the corresponding protein and oil 

content for fields A and B in 2012 and 2013, using a sequential (different colors) 

and nominal (singlehue with different lightness/saturation) color scheme 

Source: adapted from Silva (2016). 
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2.1.2. Yield, profit, and profitability maps 

 

 

Bazzi et al. (2015) studied the economic viability of agricultural products 

using profit and profitability maps. For each data set, yield, profit, and profitability 

maps (Fig. 9) were generated using the following interpolation methods: inverse 

of the distance (ID), inverse of the square distance (IDS), and kriging (KRG). They 

concluded that profit and profitability maps are important tools for the diagnosis 

of spatial variability of economic return because they assist farmers in 

management decision-making. The impact of the interpolator type was less than 

200 kg ha-1 for yield, US$ 30 ha-1 for profit, and 7% for profitability. Fig. 9 shows 

that there are in this 45-ha area variations from 2.5 to 5.5 t ha-1 for yield, from -

300 to 450 $ ha-1 for profit, and from -45 to 45% for profitability. 

 

 

Fig. 9. Yield, profit, and profitability maps for the 2006 Soybean harvest using the 
interpolation methods (i) inverse distance weighted (IDW), (ii) inverse distance 
weighted squared (IDS) and (iii) kriging (KRG). The production cost and sale 
prices of the product were obtained in the harvest month in a 45-ha field 

Source: Bazzi et al. (2015).  
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2.1.3. Grape yield maps 

 

 

Martínez-Casasnovas and Bordes (2005) used information obtained from 

multispectral images to estimate crop vigor and to forecast yield (Fig. 10) in 

Spain, at the wine farm of Raimat (Lleida). 

 

Fig. 10. Comparison of the 2004 yield map of a ‘Cabernet Sauvignon’ plot (left) 
with the map obtained from a prediction model using the NDVI (normalized 
difference vegetation index) from a QuickBird-2 multispectral image acquired one 
month before harvesting (center) (R2 = 0.72). The map on the right shows the 
differences of both maps 

Source: Martínez-Casasnovas and Bordes (2005). 

 

 

2.1.4. Apple attributes maps 

 

 

Longo (2017) developed a tool (apple show) to map the apple quality 

indices georeferenced and turn them into a graphics variable to provide support 

in the orchard management. Fig. 11 presents the firmness of fruit pulp and total 

soluble solids of the fruits in an area of 3.13 ha.  

26



 

                       a)                                      b) 

Fig. 11. The firmness of fruit pulp (a) and total soluble solids of apple fruits (b) in 
a 3.13-ha area 

Source: adapted from Longo (2017). 

2.1.5. Weed infestation maps 

 

 

Balastreire and Baio (2001) evaluated a practical method for weed 

mapping by driving over the patch contour with an all-terrain vehicle. Fig. 12  

presented a weed map showing three infestations levels. An important conclusion 

obtained was that timing to perform the weed mapping is a crucial factor to be 

considered for site-specific chemical applications 
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Fig. 12. Weed maps showing three infestations levels from a 72-ha flat terrain, 
planted in the no-tillage system and with soil covered by soybean stubble 

Source: adapted from Balastreire and Baio (2001). 

 

2.1.6. Dry matter yield, stocking rate, and milk yield maps 

 

 

Bernardi et al. (2016) evaluated the spatial variability of soil properties, 

yield, lime and fertilizer needs, and economic return of an alfalfa pasture. The 

study was conducted in a 5.3-ha irrigated alfalfa pasture in São Carlos, SP, Brazil, 

directly grazed and intensively managed in a 270-paddock rotational system. 

According to them, the stocking rate is a key management variable for 

determining productivity and profitability of grazing systems, and Fig. 13 

illustrates that the simulation based on dry matter yield allowed estimation of 

stocking rates and milk yield within the area. Therefore, maps of this type may be 

used to avoid over-or under-grazing. In addition, this study showed the 

methodology's advantages that allow the identification of areas for differentiated 

paddocks management instead of homogeneous fertilizer application.   

 High 

infestation 

 Average 

infestation 

 Low 

infestation 
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Fig. 13. Kriged maps for dry matter yield (a), stocking rate (b), and milk yield (c) 
of a grazed alfalfa pasture in Brazil 

Source: Bernardi et al. (2016). 
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3. Management Zones (MZs) 
 

MZ is a kind of choropleth map that is a sub-region of a field that expresses 

a functionally homogeneous combination of yield-limiting factors. However, 

despite this original concept of an MZ, the target agricultural variables can be 

other than yield, like pest and disease infestation, water content, Brix, soil 

resistance to penetration, and crop quality. An MZ can be used for one year or 

several years (usually three to five). This fact is essential when we are choosing 

variables. If we are planning to use only once, as in weed infestation, we can use 

variables that are not temporally stable to delineate the MZs. However, in most 

cases, we want to use the MZs for multiple years, and we should use relatively 

temporally stable variables like topography data (elevation and slope) and 

physical data (Bulk density, soil texture, soil penetration resistance – SPR).  

Considering the importance of the delineation of MZs in the current context 

of PA, we made a systematic literature study (SLS) that had as the primary focus 

to identify researches about the delineation of MZs, as well as reporting the 

results of their use and synthesizing evidence that allows a common 

understanding of this research area. In this SLS, we used three techniques: (i) 

systematic literature mapping (SLM), which identifies searches in a given topic 

by choosing keywords and conducting database searches, (ii) snowballing (SB), 

which expands the initial selection by adding new studies to the classification 

process, consulting the references of the selected studies, (iii) systematic 

literature review (SLR), which summarizes the studies identified with SLM and 

SB.  

 

3.1 Systematic Literature Study (SLS) 

 

As mentioned, three steps were followed for the study: 

Step 1 – Systematic Literature Mapping (SLM): The SLM was developed 

according to the following sequence of steps: definition of keywords, choice of 

30



scientific databases, determination of study selection criteria, study analysis, and 

synthesis methodology (Kitchenham and Charters, 2007; Talavera et al., 2017). 

To define the keywords, we raised the following questions: (1) what are 

the procedures and protocols for the delineation of MZs? (2) what are the most 

common algorithms for the delineation of MZs? (3) how to find the ideal number 

of MZs classes? (4) what are the economic or environmental advantages of the 

adoption of MZs? (5) what software is used for delineating MZs? To obtain access 

to scientific databases, we used the portal of the Coordenação de 

Aperfeiçoamento de Pessoal de Nível Superior (Coordination for the Upgrading 

of Higher Education Personnel, CAPES) through the remote access platform of 

the Comunidade Acadêmica Federada (Federated Academic Community, CAFe) 

(Fig. 14). We searched four databases considered relevant to this research area: 

Scopus, Science Direct, Web of Science, and Wiley. 

The period covered by the SLM searches was limited from 2008 to 2019 

to present the most recent articles. However, the SB had rescued relevant 

researches left behind. The standardized information extracted from all articles 

were: title, authors, journal, publication volume, the country in which the research 

was developed, year of publication, abstract, DOI, software used, and results.  

Step 2 - Snowballing (SB): The SB is characterized by the addition of new 

references to the classification process by consulting the references of the 

selected studies and sharing references from people with knowledge in the area, 

thus characterizing a sample of chain references (Biernacki and Waldorf 1981; 

Cohen and Arieli 2011). In this book, snowballing was used as a complementary 

strategy to increase the efficiency and quality of the search, reducing the chances 

of obtaining a search bias (Cohen and Arieli 2011) and rescuing important classic 

texts referring to the period before 2008. It is important to note that no survey 

method is 100% effective, but the combination of both techniques is expected to 

reduce omission problems. 
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Fig. 14. Workflow used with the Systematic Literature Mapping (SLM) 

 

Snowballing can be categorized as backward snowballing (BSB) or 

forward snowballing (FSB). With the BSB, new articles are included based on the 

list of references raised with the SLM. Nevertheless, with the FSB, new studies 

are included from the list of references of ones selected by BSB (Wohlin 2014). 

The flow of selection of works used in the SLS is shown in Fig. 15 and Fig. 

16. Table 1 presents the 165 studies selected by type of research technique 

(SLM,  BSB, and FSB). Only ones directly related to agriculture (excluding, for 

example, those related to forestry or geological management) and which have 

explained the process of delineation of MZs were kept. Studies that delineate 

management zones using algorithms based only on images (without other layers 

of information or indexes) were also excluded. 
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Table 1. Clustering of studies selected by research technique 

Technique  studies 

Systematic 
literature mapping 

(SLM) 96 
references 

(Ikenaga and Inamura 2008; Kyaw et al. 2008; Mishra et al. 2008; Molin and de Castro 2008; 
Robertson et al. 2008; Velandia et al. 2008; Vitharana et al. 2008b; Vitharana et al. 2008a; Li 
et al. 2008; Morari et al. 2009; Song et al. 2009; Xin-Zhong et al. 2009; Buttafuoco et al. 2010; 
Castrignanò et al. 2010; Fu et al. 2010; Guastaferro et al. 2010; Moral et al. 2010; Aimrun et 
al. 2011; Arno and Martinez-Casasnovas 2011; Moral et al. 2011; Salami et al. 2011; Suszek 
et al. 2011; Jiang et al. 2011; Bansod et al. 2012; Davatgar et al. 2012; Jiang et al. 2012; 
McClymont et al. 2012; Roberts et al. 2012; Valente et al. 2012; Aggelopooulou et al. 2013; 
Alves et al. 2013; Bazzi et al. 2013; Benedetto et al. 2013b; Benedetto et al. 2013a; Cid-
Garcia et al. 2013; Córdoba et al. 2013; Diacono et al. 2013; Li et al. 2013; Lin et al. 2013; 
Meirvenne et al. 2013; Peralta et al. 2013; Peralta and Costa 2013; Ruß 2013; Santesteban 
et al. 2013; Santi et al. 2013; Scudiero et al. 2013; Tagarakis et al. 2013; Chang et al. 2014; 
Galambošová et al. 2014; Gozdowski et al. 2014; Patil et al. 2014; Urretavizcaya et al. 2014; 
Yao et al. 2014; Bazzi et al. 2015; Caires et al. 2015; Landrum et al. 2015; Rodrigues and 
Corá 2015; Santos and Saraiva 2015; Tripathi et al. 2015; Peralta et al. 2015; Boluwade et 
al. 2016; Cavallo et al. 2016; Córdoba et al. 2016; Damian et al. 2016; Gavioli et al. 2016; 
Oldoni and Bassoi 2016; Ortuani et al. 2016; Schenatto et al. 2016b; Shaddad et al. 2016; 
Shamal et al. 2016; Sobjak et al. 2016; Xiaohu et al. 2016; Bottega et al. 2017; Buttafuoco et 
al. 2017; Gili et al. 2017; González-Fernández et al. 2017; Jacintho et al. 2017; Schenatto et 
al. 2017b; Servadio et al. 2017; Yari et al. 2017; Shukla et al. 2017; Agati et al. 2018; Albornoz 
et al. 2018; Behera et al. 2018; Bernardi et al. 2018; Betzek et al. 2018; Karlik et al. 2018; 
Miao et al. 2018; Schwalbert et al. 2018; Scudiero et al. 2018; Whetton et al. 2018; Martínez-
Casasnovas et al. 2018; Khan et al. 2018; Verma et al. 2018; González-Fernández et al. 
2019; Moral et al. 2019) 

Backward 
Snowballing (BSB) 

18 references 

(MacQueen 1967; Bezdek 1981; McBratney and Moore 1985; Hotelling 1933; Odeh et al. 
1992 Gnanadesikan  et al. 1995; Dobermann et al. 2003; Hornung et al. 2006; Dray et al. 
2008; Schenatto et al. 2016a; Nawar et al. 2017; Souza et al. 2018; Albornoz et al. 2019; 
Betzek et al. 2019; Gavioli et al. 2019; Loisel et al. 2019; Bazzi et al. 2019; Nascimento et al. 
2019) 

Forward 
Snowballing (FSB)  

51 references 

(Biernacki and Waldorf 1981; Rousseeuw 1987; Webster 1990; Blackmore and Moore 1999; 
Khosla and Alley 1999; Blackmore 2000; Doerge 2000; Fleming et al. 2000; Fridgen et al. 
2000; Fraisse et al. 2001; Boydell and McBratney 2002; Franzen et al. 2002; Khosla et al. 
2002; Kitchen et al. 2002; Minasny and McBratney 2002; Molin 2002; Ping and Dobermann 
2003; Taylor et al. 2003; Adamchuk et al. 2004; Fridgen et al. 2004; Amidan et al. 2005; Brock 
et al. 2005; Jaynes et al. 2005; Kitchen et al. 2005; Frogbrook and Oliver 2007; Kitchenham 
and Chartes 2007; Li et al. 2007; Sudduth and Drummond 2007; Taylor et al. 2007; Xiang et 
al. 2007; Gonzales and Woods 2008; Inman et al. 2008; Coelho et al. 2009; Kitchenham et 
al. 2009; Zhang et al. 2010; Cohen and Arieli 2011; Kuang et al. 2012; NIST/SEMATECH 
2012; Hörbe et al. 2013; Baudron and Giler 2014; Wohlin 2014; Mieza et al. 2016; Mulla and 
Khosla 2016; Arango et al. 2017; Talavera et al. 2017; Schemberger et al. 2017; Schenatto 
et al. 2017a; Yang et al. 2017; Ortuani et al. 2019; Reyes et al. 2019; Vega et al. 2019) 

 

 

After the selection, the studies (165) were clustered in chronological order 

of publication (Fig. 17. Quantity of selected studies classified in chronological 

order and type of research technique, Systematic Literature Mapping (SLM), 

Backward Snowballing (BSB), and Forward Snowballing (FSB)Fig. 17). We 

observed a smooth growth tendency until the year 2013, which presented the 

largest number of studies (19). In 2014, there was a drop (8 studies), but with a 

tendency for growth in later years.  
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Fig. 15. Workflow used for the Systematic Literature Study (SLS) 
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Fig. 16. Stages followed in the systematic literature study (SLS) to select the 
primary papers: Identification (ID); discarding duplicates (DD), selection by title 
reading (STR); selection by abstract reading (SAR), selection by paper reading 
(SPR), adding by Backward Snowballing (BSB), and adding by Forward 
Snowballing (FSB) 

 

 

Fig. 17. Quantity of selected studies classified in chronological order and type of 
research technique, Systematic Literature Mapping (SLM), Backward 
Snowballing (BSB), and Forward Snowballing (FSB) 

35



 

Except for Antarctica, all continents were represented by at least one of 

the selected studies (Fig. 18). They were classified by the country where the 

authors conducted the research and when is only a theoretical manuscript, where 

it was published. Regarding the distribution vehicle (Fig. 19), the journals 

Computers and Electronics in Agriculture and Precision Agriculture presented the 

most studies selected, with 17 and 14%, respectively. The journals and 

publishers that showed less than three studies in the review were clustered into 

a single item “others”. 

 

 

Fig. 18. Distribution of selected studies by country of study (classified by the 
country where the authors conducted the research, and when is only a theoretical 
manuscript, where it was published) 
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Fig. 19. Distribution of selected articles by journals in which the selected studies 
were published 

 

Step 3 - Systematic literature review (SLR): After identifying the relevant 

scientific articles using SLM and SB, the SLR (Kitchenham et al., 2009) was 

conducted to aggregate the existing information on each researched question. 

 

3.1.2 Results and discussion of the SLS 

 

 

The terms MZ and management class (MC) are frequently used in PA 

literature and often interchangeable terms. However, these terms are not 

identical. An MC is an area in which a particular treatment may be applied. A 

management zone is a spatially contiguous area to which a specific treatment 

may be used. Thus, an MC may consist of numerous zones, whereas an MZ can 

contain only one MC  (Taylor et al. 2007). 
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Procedures and protocols for the delineation of management zones 

(Question 1) 

 

Much effort has been made and is being made in defining the best 

delineation process for MZs. While some studies focus on creating a protocol that 

encompasses the entire process, from the initial treatment of the variables to the 

evaluation of the result, others work on specific parts of the process. 

In this survey, we found four studies that define a complete protocol for 

delineating MZs, but only one considers temporal issues. The first, developed by 

Santos e Saraiva (2015), uses the Business Process Model and Notation (BPMN) 

to facilitate the interpretation. The authors proposed five macro steps: (1) data 

collection, (2) data filtering, (3) data selection, (4) data clustering, and (5) map 

evaluation. Each macro step is subdivided into several steps, some with 

sequential and others with iterative flow. Córdoba et al. (2016) proposed a seven-

step protocol: (1) conversion of spatial coordinates, (2) removal of outliers, (3) 

removal of inliers, (4) spatial interpolation, (5) multivariate site classification, (6) 

smoothing of classification results, and (7) smoothing of classification results. A 

script in the R language containing codes ready for executing each of the steps 

is also available. 

Souza et al. (2018) presented a more specific protocol, divided into nine 

main stages: (1) selection of the coordinate system, (2) remotion of the outliers 

and inliers, (3) data normalization, (4) variable selection which will be used for 

delineating MZs, (5) data interpolation, (6) delineation of MZs, (7) rectification of 

the MZs, and (8) selection of the optimal number of MZs, and (9) evaluation of 

the MZs. Although there are subtle differences between the cited protocols, all 

primarily perform the same tasks and are very similar. The protocol proposed by 

Souza et al. (2018), considered more completed, is presented in Fig. 20. 

Differently of three other protocols, the one outlined by Scudiero et al. 

(2018) takes into account variations between the soil-plant, consisting of four 

main steps: (1) soil and time-specific plant spatial information acquisition, pre-

processing interpretation, and interpolation, 2. time-specific sub-field soil-plant 

modeling, (3) time-specific MZ delineation with cluster analysis, and (4) 

evaluation and interpretation of the MZs. The authors comment that traditional 
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MZ delineation methods create static zones that are not ideal since the spatial 

patterns of the soil-plant relationship change over time due to weather changes 

and/or other transient factors. 

In addition to previous efforts to define a complete protocol for delineating 

MZs, some authors addressed specific issues at each stage, that is, they perform 

studies aimed at improving part of the process. Thus, the studies selected by the 

research are organized below according to the sequence in the process: 

1. Acquisition of variables: According to Nawar et al. (2017), the seven 

most common properties that can be used as an input variable for delineating 

MZs are related to:  

• Farmer knowledge – this knowledge may allow the identification of 

different MZs in a field, based on the production history (Fleming et al. 2000, 

Khosla et al. 2002, Hörbe et al. 2013, Schenatto et al. 2017a). 
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Fig. 20. The protocol of the delineation of management zones, according to 
Souza et al. (2018). ANOVA: analysis of variance, SD: standard deviation, MZ: 
Management Zone, SD: standard deviation, ANOVA: analysis of variance, FPI: 
Fuzziness Performance Index), MPE: Modified Partition Entropy, VR: variance 
reduction, ICVI: improved cluster validation index, ASC: average silhouette 
coefficient 
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• Geomorphology – elevation is the most used topographic variable 

to delineate MZs. However, other variables like elevation, slope, plan 

curvature, aspect, and depression depth have been successfully used 

(Jaynes et al., 2005). Another possibility is the topographic position index 

(Mieza et al. 2016). 

• Soil chemical and physical analyses – the soil chemical variables 

are often discarded to delineate MZs to be used for several years (Doerge, 

2000) because of their temporal variability. However, they can be very 

interesting to delineated MZs to be used only once, as in the variable-rate 

fertilizer application. Nevertheless, soil physical variables, like sand, silt and 

clay contents, organic matter, and soil water content, are often used to 

delineate MZs (Doerge, 2000; Buttafuoco, 2010).  

• Soil class – the general sense is that soil maps, even with high 

resolution, are alone insufficient to reliably identify crop productivity MZs 

since in a zone with the same soil series, many other variables can influence 

yields (like topography and chemical attributes) (Khosla and Alley, 1999; 

Franzen et al., 2002; Brock et al., 2005). In addition, Franzen et al. (2002) 

further reported that Order 1 soil survey maps (i.e., map scales of 1:5000 to 

1:10 000) were helpful for developing Nitrogen-MZs. 

• Yield maps – they are the complete information to visualize the 

spatial variability of crops (Molin 2002). However, its temporal variation 

complicates using a single-year yield map to delineate MZs reliably. 

Blackmore (2000) and Molin (2002) used normalized data from multiple years 

to compensate for this problem. Although one-year yield data alone are not 

directly suitable for MZs determination, their availability and low cost make 

them a valuable possibility for improving the effectiveness of MZs delineation 

based on other information (Nawar 2017). Two approaches are commonly 

used for delineating MZs using yield maps (Xiang et al. 2007): (1) the 

empirical method, which uses frequency distribution of yield and expertise 

knowledge to divide the field usually in three or four MZs (Blackmore 2000), 

and (2) cluster analysis such as K-means and fuzzy c-means (FCM) (Taylor 

et al. 2003; Taylor, Mcbratney, and Whelan 2007; Li et al. 2007) and/or 
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iterative self-organizing of data analysis technique (Fridgen et al.2000; 

Kitchen et al. 2002). 

• Crop coverage – the most used information about crop coverage is 

vegetation indices (VI) and leaf area index (LAI). Both can be measured 

manually and using remote sensing (RS) methods. Traditional methods for 

acquiring crop traits (plant height, leaf color, LAI, chlorophyll content, 

biomass, yield) rely on manual sampling, which is time-consuming and 

laborious (Yang et al. 2017). However, RS platforms, like unmanned aerial 

vehicles (UAV), equipped with different sensors, are currently an important 

approach. The most common RS application in PA is detecting spatial and 

temporal patterns in crop nutrient deficiencies (Mulla and Khosla 2016), and 

it can provide information about photosynthetically active biomass – ie 

canopy health and vigor. Several authors use RS data to delineated MZs 

based on RS data alone (Inman et al. 2008; Song et al. 2009; Chang et al. 

2014) or for improving the effectiveness of MZs delineation based on other 

information (Li et al. 2007; Inman et al. 2008; Song et al. 2009; Ortuani et al. 

2019, Tagarakis et al. 2013). 

• Proximal soil sensors – conventional soil sampling and analyses 

have shown mixed economic returns due to the high costs associated with 

labor-intensive sampling and analysis procedures, which map uncertainties 

might accompany. Therefore, conventional laboratory methods are being 

replaced or complemented with analytical soil sensing techniques (Kuang et 

al. 2012). Typically, sensor sampling is taken at fixed intervals using a vehicle 

while driving along straight parallel lines, thus resulting in a regular grid of 

sample points, producing a fine-resolution spatial data that can reveal 

detailed spatial patterns of measured parameters (e.g., electrical, optical, 

mechanical, electrochemical, acoustic, and pneumatic) (Nawar 2017; 

Adamchuk et al. 2004; Kuang et al. 2012). 

Scudiero et al. (2013) emphasized the potential of using multiple-sensor 

platforms to delineate MZs. For example, they combined two proximal-sensing 

(the apparent electrical conductivity of the soil (ECa) and bare-soil NDVI) data 

and the FCM algorithm to divide a 21-ha cornfield into five zones. The authors 

commented that even when measurements like ECa and bare-soil NDVI are not 
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directly correlated to the corn yield, their combined use could help classify the 

soil according to its fertility.  

2. Remotion of the outliers and inliers: exploratory data analysis (EDA) is 

the summarization of the data set through their main characteristics and employs 

a variety of techniques (mostly graphical) to maximize insight into a data set 

(NIST/SEMATECH, 2013). When constructing MZs, the essential use of EDA is 

to detect and remove outliers. According to Amidan et al. (2005), data outliers 

can significantly impact data-driven decisions, and in many cases, they do not 

reflect the true nature of the data and, hence, should not be included in the 

analyses. According to Córdoba et al. (2016), the values outside the mean ± 3 

SD are identified as outliers and should be removed. They remarked that even 

though real data could belong to this interval, the upper and lower limits should 

be modified to obtain robust variance estimators. Also necessary is the removal 

of inliers, data that differ significantly from their neighborhood but lie within the 

variation range of the data set (Córdoba et al., 2016). For yield data obtained with 

yield monitor, additional care should be taken. Many approaches for yield data 

cleaning were already being proposed (like by Blackmore and Moore, 1999) to 

eliminate errors associated with unknown header width, combine filling/emptying 

times, the time lag of grain through the combine, positional errors, rapid velocity 

changes, and others (Sudduth and Drummond, 2007). Vega et al. (2019) 

proposed a protocol for automating error removal from yield maps divided in two 

steps: (1) removal of yield data with values equal to zero, removal edge values 

and potential end-of-field yield monitor errors, and removal of yield data that are 

outside the mean ± 3 SD; and (2) use of the local Moran's spatial autocorrelation 

index and the Moran's plot to identify and remove data that are inconsistent with 

their neighbor points. The protocol was evaluated on 595 real yield datasets with 

good results and can be used with other geo-referenced variables in precision 

agriculture. 

3. Data normalization: some clustering techniques like the FCM algorithm 

with Euclidean are sensitive to characteristics of the input variables. Fridgen et 

al. (2004) reported that Euclidean distance should be used only for statistically 

independent variables demonstrating equal variances. In this sense, when the 

Euclidean distance is used to clustering, the normalization data can be a crucial 

step before creating MZs (Schenatto et al. 2017b). Schenatto et al. (2017b) 
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evaluated the influence of using three data normalization methods (amplitude, 

mean, and standard score) for the delineation of MZs with the FCM algorithm 

using Euclidean distance, with corn and soybean data. The authors concluded 

that the amplitude normalization method was the most appropriate. 

4. Selection of input variables: The selection of variables that are most 

related to the target variable, usually crop yield, can be done before or after 

delineating the MZs. According to Gnanadesikan et al. (1995), the weighting and 

selection of variables is the most challenging issue in cluster analysis. However, 

the capacity of clustering software to process a large number of variables 

encourages users to be generous in the number of variables used in the process. 

Furthermore, the variable choice (as well as their weights) can and often will 

influence the clustering (delineation of MZs) (Gozdowski 2014, Sobjak 2016). 

Sobjak et al. (2016) showed that with the FCM algorithm, no combination of 

variables produced statistically better performance than the MZ delineated only 

with non-redundant variables. Therefore, the selection of variables before the 

delineation process is recommended. 

4.1 Selection of variables before the delineation process: in this case,  

techniques are applied to reduce the variables' number and/or dimensionality. 

The use of redundant variables decreases the performance of the clustering and 

increases the computational time (Bazzi et al. 2013; Schenatto et al. 2016a; 

Sobjak et al. 2016). Good results were obtained with multivariate techniques for 

reducing the dimensionality of variables and promoting orthogonality between 

them (Hotelling 1933; Dray et al. 2008; Gavioli et al. 2016). Three variable 

selection techniques (Table 2) that are most used in combination with the FCM 

algorithm are: 

• Spatial correlation analysis (Bazzi et al., 2013): is a method using 

Moran's bivariate spatial autocorrelation statistic to build a spatial correlation 

matrix. The procedure was: (1) elimination of variables with no significant 

spatial autocorrelation at 95% significance; (2) removal of the variables that 

were not correlated with yield (or other target variables); (3) decreasing 

ordination of the remaining variables, considering the degree of correlation 

with yield; and (4) elimination of variables which are correlated with each 

other, with preference to remove those variables with lower correlation with 

yield. 
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• Principal component analysis (PCA) (Hotelling, 1933): is a 

multivariate technique that consists of building a new set of orthogonal 

synthetic variables denominated principal components (PC) and is the most 

frequently reported technique (Table 2) in the process of selection/reduction 

of variables for delineating MZs. These PCs are linear combinations of the 

original variables resulting from transformations that prioritize the 

representation of the data variability in the first components. Thus, if the 

original variables have a high degree of dependence between them, one can 

reduce the dimensionality of the data using the first PCs. Another possibility 

is to select only the variables that had the most significant influence on the 

PCs for the delineation. 

• Multivariate spatial analysis based on Moran’s index PCA 

(MULTISPATI-PCA)(Dray et al. 2008; Córdoba et al. 2013; Gavioli et al. 

2016): is an extension of the PCA which adds spatial restriction considering 

data georeferencing (and, therefore, the spatial dependence) by adding a 

spatial weighting matrix created with Moran's bivariate spatial autocorrelation 

statistic. The MULTISPATI-PCA aims to maximize the spatial autocorrelation 

between the points, while the traditional PCA, the total variance. 

 

Table 2. Main techniques for the selection of variables for delineation of 
management zones (MZs) 

Selection technique 
N° of 

papers 
Papers 

Spatial correlation 
analysis 

10 
(Bazzi et al. 2013; Gavioli et al. 2016; Schenatto et al. 2016a; Schenatto 
et al. 2016b; Sobjak et al. 2016; Jacintho et al. 2017; Schenatto et al. 
2017b; Betzek et al. 2018; Bazzi et al. 2019; Betzek et al. 2019) 

Principal Component 
Analysis (PCA) 

38 

(Fraisse et al. 2001; Li et al. 2007; Molin and de Castro 2008; Vitharana et 
al. 2008a; Morari et al. 2009; Xin-Zhong et al. 2009; Buttafuoco et al. 2010; 
Castrignanò et al. 2010; Guastaferro et al. 2010; Moral et al. 2010; Salami 
et al. 2011; Jiang et al. 2011; Bansod et al. 2012; Davatgar et al. 2012; 
Jiang et al. 2012; Benedetto et al. 2013b; Li et al. 2013; Lin et al. 2013; 
Meirvenne et al. 2013; Peralta et al. 2013; Peralta and Costa 2013; 
Urretavizcaya et al. 2014; Yao et al. 2014; Caires et al. 2015; Landrum et 
al. 2015; Tripathi et al. 2015; Córdoba et al. 2016; Gavioli et al. 2016; 
Ortuani et al. 2016; Buttafuoco et al. 2017; Gili et al. 2017; Shukla et al. 
2017; Behera et al. 2018; Schwalbert et al. 2018; Scudiero et al. 2018; 
Verma et al. 2018; González-Fernández et al. 2019; Reyes et al. 2019) 

MULTISPATI-PCA 4 
(Córdoba et al. 2013; Peralta et al. 2015; Gavioli et al. 2016; Gili et al. 
2017) 

 

Gavioli et al. (2016) evaluated the efficiency of each of these three 

techniques (spatial correlation analysis, PCA, MULTISPATI-PCA) and two new 

methods proposed by them. One, the MPCA-SC, based on the combined use of 
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spatial correlation analysis and MULTISPATI-PCA, and other, PCA-SC, which 

applies PCA only to the stable variables that showed significant spatial correlation 

with the target variable (selected by the spatial correlation matrix). They found 

out that the MPCA-SC provided the best performance for the FCM algorithm, 

reducing the dimensionality of the data without losing essential information in 

most cases.  

4.2 Selection of variables after the delineation process: Although selecting 

variables before the delineation process is the most common, some authors 

decided to proceed after. These are the cases of:  

• Kitchen et al. (2005) compared the productivity zones (SPZ) 

delineated using ECa and elevation with the ones from yield map data (YPZ). 

Using overall accuracy and Kappa coefficient K, they found the best 

combination of ECa and/or elevation data combinations. They considered 

this level of agreement (until 60–70%) promising, especially considering 

many other yield-limiting factors unrelated to ECa and elevation. 

• Gozdowski et al. (2014) used logistic regression to find witch soil 

attributes were more correlated with the MZs delineated thought the multiyear 

mean standardized yield divided each field into two zones, one above and 

one below the mean yield. They analyzed several variables, including soil 

chemical and physical properties and topographic attributes, and concluded 

that soil sand and organic carbon content produced the most proper 

delineation of MZs. 

• Bottega et al. (2017) delineated MZs based on the one-year yield 

data and MZs based on ECa, coarse sand, fine sand, silt, clay, and 

combinations among them. Using the Kappa coefficient, they concluded that 

ECa provided the best agreement. 

• Miao et al. (2018) evaluated three approaches to delineating MZs 

on two no-till corn-soybean rotation fields: (1) ROSE-YSTTS, using relative 

elevation, organic matter (OM), slope, ECa), yield spatial trend map, and yield 

temporal stability map, (2) ROSE, using soil and landscape information 

(relative elevation, OM, slope, and ECa), and (3) CMYYM, using clustering 

multiple-year yield maps corn-soybean turnover. They evaluated the 

accuracy of different approaches using relative variance (Dobermann et al. 

2003) and concluded that the ROSE-YSTTS approach could overcome the 

46



weaknesses of approaches using only soil, landscape, or yield information 

and is more robust for MZ delineation. 

5. Data interpolation: usually, the data to delineate MZs is interpolated to 

delineate MZs that are continuous and smooth. Typically, this task is performed 

with inverse distance weighting (IDW) or kriging interpolation methods. Kriging is 

the best interpolator when a minimum spatial dependence is confirmed; 

otherwise, the IDW presents an advantage (Betzek et al. 2019). 

6. Delineation of the MZs - Two approaches are commonly used for 

delineating MZs: (1) the empirical method, which uses frequency distribution of 

target variable (usually yield)  to divide the field MZs  (Blackmore 2000), and (2) 

cluster analysis such as K-means and FCM (Taylor et al. 2003; Taylor et al. 2007; 

Li et al. 2007). The cluster analysis methods are intended to divide the data points 

of an agricultural area into classes, which are also termed groups, by employing 

a similarity evaluation function for this division. In practice, these classes are 

applied to delineate MZs, which can be subsequently delimited in the field 

(Boydell and McBratney, 2002; Córdoba et al., 2016). 

7. Rectification of the MZs: After their delineation, the MZs often present 

isolated pixels, small regions, or even a transition border between very irregular 

zones, making it difficult or even impossible to operate in the field. In this sense, 

a smoothing process called rectification can be applied to optimize the zones. 

Betzek et al. (2018) presented a solution based on the filters mode and median 

application with 3 × 3 and 5 × 5 pixel masks. The best results were obtained with 

masks of 5x5 pixels, regardless if it is used mode or median. Gonzalez and 

Woods (2008), Córdoba et al. (2016), and Albornoz et al. (2018) used median 

and dilatation filters and erosion to reduce the fragmentation of MZs. 

8. Evaluation of the delineated MZs: the performance of the delineation 

process can be assessed using indices and analysis of variance (ANOVA). The 

most used statistics are: (1) variance reduction (VR) (Ping and Dobermann, 

2003), (2) the fuzziness performance index (FPI) (Fridgen et al., 2004), (3) 

modified partition entropy (MPE) (McBratney and Moore 1985), (4) normalized 

classification entropy (NCE) (Bezdek 1981), (5) improved cluster validation index 

(ICVI) (Gavioli et al., 2016), (6) smoothness index (SI) (Gavioli et al., 2016), (7) 

average silhouette coefficient (ASC) (Rousseeuw 1987), (8) Kappa coefficient (K) 

(Cohen, 1960), and (9) coefficient of relative deviation (CRD) (Coelho et al., 
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2009). Depending on the MZ delineation approach, only some of these indices 

can be used: FPI, MPE, NCE, and ICVI can only be used with fuzzy logic. These 

measures aim to quantify how heterogeneous the zones are across the study 

field (important for MZ delineation or the similarity between the zones (important 

for most segmentation algorithms, in their zone fusion stage), but not 

simultaneously.  

In this sense, Loisel et al. (2019) presented a criterion that considers both 

questions, conducting tests on 50 hypothetical and one real database. Their 

results showed the relevancy of the methodology to compare maps with different 

zones and to sort them and provided a ranked set of possible maps with different 

within-field zones.  

 

Algorithms for delineation of management zones (Question 2) 

 

Many techniques and algorithms are available for each stage of the 

delineation of MZs. Choosing the best algorithm is not a trivial task, and it should 

be conducted based on empirical analysis. However, although several statistical 

or even empirical approaches exist, the cluster methods, more specifically FCM, 

and k-means, are the most used (Table 3). 

The FCM unsupervised classification algorithm (Bezdek 1981), sometimes 

also named as Fuzzy K-means, produces a continuous cluster of objects 

considering the principles of fuzzy logic. It minimizes the variability within the 

cluster while maximizing variability between them, seeking to create 

homogeneous clusters. In addition, the fuzzy logic principle allows a specific 

element to be contained in more than one cluster simultaneously by assigning 

degrees of permanence in each one, reducing the possible distortion caused by 

outliers. 
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Table 3. Algorithms used for the delineation of management zones (MZs) 

Algorithm 
N° of 

papers 
Papers 

Fuzzy c-means (FCM) 74 

(Bezdek 1981; Boydell and McBratney 2002; Kitchen et al. 2002; Fridgen 
et al. 2004; Kitchen et al. 2005; Li et al. 2007; Kyaw et al. 2008; Mishra et 
al. 2008; Molin and de Castro 2008; Vitharana et al. 2008b; Vitharana et al. 
2008a; Li et al. 2008; Morari et al. 2009; Song et al. 2009; Xin-Zhong et al. 
2009; Fu et al. 2010; Guastaferro et al. 2010; Moral et al. 2010; Zhang et 
al. 2010; Arno and Martinez-Casasnovas 2011; Jiang et al. 2011; Bansod 
et al. 2012; Davatgar et al. 2012; Jiang et al. 2012; McClymont et al. 2012; 
Roberts et al. 2012; Valente et al. 2012; Bazzi et al. 2013; Córdoba et al. 
2013; Li et al. 2013; Lin et al. 2013; Meirvenne et al. 2013; Scudiero et al. 
2013; Tagarakis et al. 2013; Chang et al. 2014; Patil et al. 2014; 
Urretavizcaya et al. 2014; Yao et al. 2014; Bazzi et al. 2015; Caires et al. 
2015; Rodrigues and Corá 2015; Santos and Saraiva 2015; Tripathi et al. 
2015; Peralta et al. 2015; Boluwade et al. 2016; Gavioli et al. 2016; Oldoni 
and Bassoi 2016; Ortuani et al. 2016; Schenatto et al. 2016b; Schenatto et 
al. 2016a; Sobjak et al. 2016; Bottega et al. 2017; Gili et al. 2017; 
Schemberger et al. 2017; Schenatto et al. 2017b; Servadio et al. 2017; Yari 
et al. 2017; Shukla et al. 2017; Albornoz et al. 2018; Behera et al. 2018; 
Betzek et al. 2018; Miao et al. 2018; Schwalbert et al. 2018; Scudiero et al. 
2018; Martínez-Casasnovas et al. 2018; Khan et al. 2018; Verma et al. 
2018; Bazzi et al. 2019; Betzek et al. 2019; Gavioli et al. 2019; González-
Fernández et al. 2019; Nascimento et al. 2019; Ortuani et al. 2019; Reyes 
et al. 2019) 

K-means 18 

(Taylor et al. 2003; Jaynes et al. 2005; Hornung et al. 2006; Xiang et al. 
2007; Ikenaga and Inamura 2008; Inman et al. 2008; Robertson et al. 2008; 
Arno and Martinez-Casasnovas 2011; Meirvenne et al. 2013; Galambošová 
et al. 2014; Santos and Saraiva 2015; Damian et al. 2016; Schemberger et 
al. 2017; Agati et al. 2018; Karlik et al. 2018; Whetton et al. 2018; Gavioli 
et al. 2019; Loisel et al. 2019) 

non-parametric 
estimate of probability 

density function 
5 

(Castrignanò et al. 2010; Guastaferro et al. 2010; Aggelopooulou et al. 
2013; Benedetto et al. 2013b; Benedetto et al. 2013a; Diacono et al. 
2013) 

Ordinary kriging / 
Factorial kriging / 

Factorial cokriging /  

Multicollocated 
cokriging /  

Multicollocated factor 
cokriging 

5 
(Buttafuoco et al. 2010; Landrum et al. 2015; Cavallo et al. 2016; 
Shaddad et al. 2016; Buttafuoco et al. 2017) 

Ward 5 
(Fleming et al. 2000; Salami et al. 2011; Santesteban et al. 2013; 
Galambošová et al. 2014; Gavioli et al. 2019) 

ISODATA 3 
(Fraisse et al. 2001; Guastaferro et al. 2010; González-Fernández et al. 
2017) 

RASCH 2 (Moral et al. 2011; Moral et al. 2019) 

others 21 

(Blackmore 2000; Franzen et al. 2002; Molin 2002; Frogbrook and Oliver 
2007; Velandia et al. 2008; Fu et al. 2010; Suszek et al. 2011; Bansod et 
al. 2012; Cid-Garcia et al. 2013; Hörbe et al. 2013; Peralta and Costa 2013; 
Ruß 2013; Gozdowski et al. 2014; Shamal et al. 2016; Xiaohu et al. 2016; 
Jacintho et al. 2017; Nawar et al. 2017; Schemberger et al. 2017; Bernardi 
et al. 2018; Gavioli et al. 2019; Reyes et al. 2019) 

  

Three matrices are needed to develop the FCM (McBratney and Moore 

1985). The first, matrix X, consists of the data to be classified. The second, Matrix 

V, is the matrix with the centroids of the clusters, consisting of k centroids of 

clusters contained in the search space defined by matrix X. The third, matrix U, 

consists of assigning the pertinence value of each cluster in V for each point in 

X, considering that the sum of the pertinence values of each observation must be 
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equal to 1. An ideal fuzzy k partitioning is defined as a weighted minimization of 

the square distance between the observation points and the centroid of the 

classes, according to Equation 3: 

 

𝑗𝑚(𝑈, 𝑣) = ∑∑(𝑢𝑖𝑗)
𝑚
(𝑑𝑖𝑗)

2
𝑘

𝑖=1

𝑛

𝑗=0

 (3) 

 

where m is the fuzzy weighting coefficient (1≤m<∞) that controls the pertinence 

value shared between classes. The closer to 1, the smaller the sharing between 

classes; the closer to infinity, the greater the value of sharing pertinence resulting 

in less distinct classes; u represents the pertinence of the element in a class; and 

(dij)2 is the square of the distance (usually Euclidean distance) in the space 

between point j and the centroid of class i. 

Despite the lack of an explicit criterion for choosing the parameter m, when 

related to agriculture, values between 1 and 2 are generally used, being 1.3 and 

1.5 the most recurrent (Table 4). 

 

Table 4. Values adopted for the fuzzy weighting coefficient in the fuzzy c-means 
algorithm 

Exponent 
N° of 

papers 
Papers 

1 1 (Servadio et al. 2017) 

1,3 24 

(Kitchen et al. 2002; Kitchen et al. 2005; Kyaw et al. 2008; Vitharana et al. 2008b; 
Morari et al. 2009; Moral et al. 2010; Arno and Martinez-Casasnovas 2011; 
Roberts et al. 2012; Bazzi et al. 2013; Córdoba et al. 2013; Meirvenne et al. 2013; 
Tagarakis et al. 2013; Patil et al. 2014; Rodrigues and Corá 2015; Peralta et al. 
2015; Gili et al. 2017; Schenatto et al. 2017b; Yari et al. 2017; Betzek et al. 2018; 
Schwalbert et al. 2018; Martínez-Casasnovas et al. 2018; Khan et al. 2018; Betzek 
et al. 2019; Reyes et al. 2019) 

1,5 13 

(Fridgen et al. 2004; Vitharana et al. 2008a; Xin-Zhong et al. 2009; Davatgar et al. 
2012; Jiang et al. 2012; Lin et al. 2013; Scudiero et al. 2013; Chang et al. 2014; 
Tripathi et al. 2015; Cavallo et al. 2016; Shukla et al. 2017; Albornoz et al. 2018; 
Behera et al. 2018) 

2 2 (Valente et al. 2012; Alves et al. 2013) 

 

Although Euclidean distance (Table 5) is usually used as a parameter for 

both FCM and k-means, it generates spherical clusters, hardly present in soil 

data, and it is sensitive to the amplitude (thus requiring normalization of the data) 

of the variables when two or more input variables are used (Bezdek 1981; Fridgen 
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et al. 2004, Schenatto et al. 2017b). The Mahalanobis distance is often used as 

an alternative, especially when clustering multivariate data since it adds intra-

class variance restrictions to the calculation (Bezdek 1981; McBratney and Moore 

1985). 

 

Table 5. Types of distances used in the Fuzzy c-means algorithm 

Distance 
N° of 

papers 
Papers 

Euclidian Distance  28 

(Fraisse et al. 2001; Kyaw et al. 2008; Molin and de Castro 2008; Robertson et 
al. 2008; Morari et al. 2009; Xin-Zhong et al. 2009; Guastaferro et al. 2010; 
Davatgar et al. 2012; Jiang et al. 2012; Roberts et al. 2012; Aggelopooulou et al. 
2013; Alves et al. 2013; Benedetto et al. 2013b; Benedetto et al. 2013a; Lin et 
al. 2013; Scudiero et al. 2013; Tagarakis et al. 2013; Chang et al. 2014; 
Galambošová et al. 2014; Rodrigues and Corá 2015; Tripathi et al. 2015; Damian 
et al. 2016; Oldoni and Bassoi 2016; Ortuani et al. 2016; Gili et al. 2017; Whetton 
et al. 2018; González-Fernández et al. 2019; Reyes et al. 2019) 

Mahalanobis 17 

(Kitchen et al. 2002; Fridgen et al. 2004; Kitchen et al. 2005; Mishra et al. 2008; 
Vitharana et al. 2008a; Arno and Martinez-Casasnovas 2011; Jiang et al. 2012; 
McClymont et al. 2012; Roberts et al. 2012; Córdoba et al. 2013; Tagarakis et 
al. 2013; Ortuani et al. 2016; Servadio et al. 2017; Yari et al. 2017; Martínez-
Casasnovas et al. 2018; Khan et al. 2018; González-Fernández et al. 2019) 

 

The k-means unsupervised clustering algorithm (MacQueen 1967) aims to 

separate the data set elements by clustering them into k sets. Initially, the 

algorithm chooses the position of k initial centroid points, usually randomly, within 

the set of points in the matrix X and calculates the distance of all points (typically 

using the Euclidean distance) to the centroids and assigns the location to the 

nearest centroid. That is, considering xj∈X, it is associated with the cluster Cj* that 

has the closest zi centroid (Equation 4). Once this assignment is made, the 

average distance from all points connected to a centroid is calculated. 

Subsequently, the centroid is repositioned at the average distance from all points 

connected to that centroid. This change can cause some points to be attributed 

to another centroid since it is always the nearest centroid. This procedure is 

repeated until no centroid has its position changed. This will occur when all the 

centroids are in the central position of the distance between the points part of that 

centroid. 

 

𝑗∗ = argmin
𝑖=1,…,𝑘

{|𝑥𝑗 − 𝑧𝑖|} (4) 
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We must consider that the fuzzy algorithms c-means and k-means are 

available in most software, which contributes to the preference of their use over 

the others. Despite this, validations are still necessary to determine the clustering 

algorithm considering agricultural data. Gavioli et al. (2019) evaluated 20 different 

clustering algorithms, including FCM and k-means, to delineate MZs with data of 

three commercial agricultural fields cultivated with soybean and corn. They used 

elevation, clay, sand, silt, soil penetration resistance, slope, and bulk density. 

McQuitty’s Method and Fanny obtained the best results in the three areas, but 

the results were equivalent to FCM and k-means in two. 

Other algorithms, such as RASCH, kriging and derivatives, and linear 

programming, are also being researched. Still, present works are low enough to 

allow a direct and more in-depth comparison in multiple situations.  

Guastaferro et al. (2010) evaluated the ISODATA, FCM algorithm, and a 

density-based non-parametric clustering method for delineating MZs in wheat. 

They considered that, although ISODATA presents a lower computational cost 

and a better visual distinction of the MZs, the lack of information on the transition 

areas was a problem.  

Gili et al. (2017) stated that the choice of the ideal algorithm of MZ 

delineation depends on the objectives of the use of the MZs. In their research on 

corn, they used the MULTISPATI-PCA to produce synthetic variables (PCs) and 

three clustering strategies: (1) S1- the first PC and the Jenk’s natural rupture 

method, (2) S2- the FCM using directly on the soil variables (Clay + silt, OM, pH, 

ECa, and organic matter index) data, and (3) S3- the FCM using the first three 

PCs. The different strategies resulted in a different number of zones with different 

characteristics: for fertilization management zonification might prioritize the 

differentiation of OM and available P contents and use S3; if water were the main 

limiting factor, the management zones would be two according to S1 or S2, 

responding to textural and altimetry differences. 

Boluwade et al. (2016) analyzed de delineation of irrigation MZs, 

employing ECa and elevation, with the FCM and the regionalization and 

partitioning clustering algorithms. Their results indicate that the use of both 

algorithms presents very similar results. 

It is also possible to combine algorithms in sequence. Galambošová et al. 

(2014), clustering yield and electromagnetic data of a 17 ha, used Ward’s method 
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(to obtain information on the clusters like the ideal number of clusters) followed 

by the k-means clustering method. The delineated MZs had more quality and 

information on the clusters than if both algorithms had been applied separately.  

The adaptation of traditional algorithms to consider new spatial constraints 

can also be performed. An example is the adaptation of the Hierarchical 

Agglomerative Constrained Clustering algorithm (HACC) to analyze spatial data 

(HACC-SPATIAL), having been tested on wheat data, demonstrating its viability 

(Ruß 2013). 

Another possibility is the modification of algorithms that were not initially 

developed for the delineation of MZs. Zhang et al. (2016) introduced 

improvements to a method that uses Binary Integer Linear Programming (BILP) 

and semivariograms, aiming to delineate rectangular MZs, due to its ease of 

operation in the field. Their results, based on rice data, demonstrate the 

effectiveness of using this method. Cid-Garcia et al. (2013) used the 

computational technique of the Integer Linear Programming Management Zone 

to delineate the MZs in a rectangular format. Albornoz et al. (2019) extended the 

approach Cid-Garcia et al. (2013), adding temporal variability restrictions, which 

improved the process. 

 

Definition of the ideal number of classes of management zones 

(Question 3) 

 

Most clustering techniques allow the user to choose the number of classes 

(MCs), making it possible to test several subdivisions in the area. Thus, one must 

define a way to select the most appropriate MCs, usually the one that presents 

the most significant reduction in the overall variance of the target variable 

(typically yield) (Frogbrook and Oliver 2007; Nawar et al. 2017). Zhang et al. 

(2010) proposed a two criteria method to decide the optimal number of zones: (1) 

overall reduction of variance is >50%, and (2) progressive reduction of variance 

is <20%. More advanced analysis of the performance of the clustering process 

can be assessed using indices and analysis of variance (ANOVA).  

According to Souza et al. (2018), it is logical to divide the entire field into 

MZs with a statistically distinct target variable. They proposed that after 

confirming that there is no spatial dependence within each class, an ANOVA is 
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Table 6. Most used measures for choosing the number of management zones 
(MZs) 

Measure 
N° of 

papers 
Papers 

Fuzziness 
Performance Index 

(FPI) 
62 

(McBratney and Moore 1985; Boydell and McBratney 2002; Kitchen et al. 2002; 
Fridgen et al. 2004; Li et al. 2007; Kyaw et al. 2008; Mishra et al. 2008; Molin 
and de Castro 2008; Vitharana et al. 2008a; Li et al. 2008; Morari et al. 2009; 
Song et al. 2009; Xin-Zhong et al. 2009; Guastaferro et al. 2010; Moral et al. 
2010; Arno and Martinez-Casasnovas 2011; Jiang et al. 2011; Bansod et al. 
2012; Davatgar et al. 2012; Jiang et al. 2012; Roberts et al. 2012; Valente et al. 
2012; Alves et al. 2013; Bazzi et al. 2013; Córdoba et al. 2013; Li et al. 2013; Lin 
et al. 2013; Meirvenne et al. 2013; Scudiero et al. 2013; Tagarakis et al. 2013; 
Chang et al. 2014; Patil et al. 2014; Urretavizcaya et al. 2014; Yao et al. 2014; 
Caires et al. 2015; Rodrigues and Corá 2015; Tripathi et al. 2015; Peralta et al. 
2015; Boluwade et al. 2016; Gavioli et al. 2016; Ortuani et al. 2016; Schenatto 
et al. 2016a; Schenatto et al. 2016b; Sobjak et al. 2016; Bottega et al. 2017; Gili 
et al. 2017; Schenatto et al. 2017b; Servadio et al. 2017; Yari et al. 2017; Shukla 
et al. 2017; Albornoz et al. 2018; Behera et al. 2018; Betzek et al. 2018; Miao et 
al. 2018; Schwalbert et al. 2018; Martínez-Casasnovas et al. 2018; Khan et al. 
2018; Verma et al. 2018; Bazzi et al. 2019; Betzek et al. 2019; González-
Fernández et al. 2019; Ortuani et al. 2019) 

Analysis of Variance 
(ANOVA) 

46 

(Fleming et al. 2000; Jaynes et al. 2005; Ikenaga and Inamura 2008; Inman et 
al. 2008; Molin and de Castro 2008; Vitharana et al. 2008b; Xin-Zhong et al. 
2009; Zhang et al. 2010; Aimrun et al. 2011; Arno and Martinez-Casasnovas 
2011; Jiang et al. 2011; Davatgar et al. 2012; Jiang et al. 2012; McClymont et al. 
2012; Bazzi et al. 2013; Córdoba et al. 2013; Li et al. 2013; Lin et al. 2013; 
Peralta et al. 2013; Santesteban et al. 2013; Scudiero et al. 2013; Chang et al. 
2014; Urretavizcaya et al. 2014; Yao et al. 2014; Bazzi et al. 2015; Santos and 
Saraiva 2015; Tripathi et al. 2015; Peralta et al. 2015; Damian et al. 2016; Gavioli 
et al. 2016; Oldoni and Bassoi 2016; Ortuani et al. 2016; Schenatto et al. 2016b; 
Schenatto et al. 2016a; Sobjak et al. 2016; González-Fernández et al. 2017; 
Schenatto et al. 2017b; Shukla et al. 2017; Betzek et al. 2018; Martínez-
Casasnovas et al. 2018; Khan et al. 2018; Verma et al. 2018; Betzek et al. 2019; 
Gavioli et al. 2019; Bazzi et al. 2019; Reyes et al. 2019) 

Normalized 
Classification 

Entropy (NCE) 
45 

(Kitchen et al. 2002; Fridgen et al. 2004; Li et al. 2007; Kyaw et al. 2008; Mishra 
et al. 2008; Vitharana et al. 2008a; Li et al. 2008; Morari et al. 2009; Xin-Zhong 
et al. 2009; Guastaferro et al. 2010; Moral et al. 2010; Arno and Martinez-
Casasnovas 2011; Jiang et al. 2011; Bansod et al. 2012; Davatgar et al. 2012; 
Jiang et al. 2012; Roberts et al. 2012; Alves et al. 2013; Córdoba et al. 2013; Li 
et al. 2013; Lin et al. 2013; Scudiero et al. 2013; Tagarakis et al. 2013; Chang et 
al. 2014; Patil et al. 2014; Caires et al. 2015; Rodrigues and Corá 2015; Santos 
and Saraiva 2015; Tripathi et al. 2015; Peralta et al. 2015; Boluwade et al. 2016; 
Ortuani et al. 2016; Gili et al. 2017; Servadio et al. 2017; Yari et al. 2017; Shukla 
et al. 2017; Albornoz et al. 2018; Behera et al. 2018; Miao et al. 2018; Schwalbert 
et al. 2018; Martínez-Casasnovas et al. 2018; Khan et al. 2018; Verma et al. 
2018; González-Fernández et al. 2019; Ortuani et al. 2019) 

Modified Partition 
Entropy (MPE) 

17 

(Boydell and McBratney 2002; Molin and de Castro 2008; Song et al. 2009; 
Valente et al. 2012; Meirvenne et al. 2013; Urretavizcaya et al. 2014; Yao et al. 
2014; Gavioli et al. 2016; Oldoni and Bassoi 2016; Schenatto et al. 2016a; 
Schenatto et al. 2016b; Sobjak et al. 2016; Bottega et al. 2017; Schenatto et al. 
2017b; Betzek et al. 2018; Betzek et al. 2019; Bazzi et al. 2019) 

Variance Reduction 
(VR) 

9 
(Gavioli et al. 2016; Schenatto et al. 2016b; Schenatto et al. 2016a; Sobjak et al. 
2016; Schenatto et al. 2017b; Betzek et al. 2018; Betzek et al. 2019; Gavioli et 
al. 2019; Bazzi et al. 2019) 

Smoothness Index 
(SI) 

6 
(Gavioli et al. 2016; Schenatto et al. 2016a; Schenatto et al. 2017b; Betzek et al. 
2018; Betzek et al. 2019; Bazzi et al. 2019) 

Relative Variance 
(RV) 

4 
(Xiang et al. 2007; Dobermann et al. 2003, Ping and Dobermann 2003; Miao, 
Mulla, and Robert 2018) 

Improved Cluster 
Validation Index 

(ICVI) 
4 

(Arango et al. 2017; Gavioli et al. 2019; Schenatto et al. 2016a; Betzek et al. 
2019) 

Average silhouette 
coefficient (ASC) 

3 (Rousseeuw 1987; Gavioli et al. 2019; Reyes et al. 2019) 
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The Modified Partition Entropy (MPE) estimates the level of difficulty in 

organizing the c clusters, with values close to 0 indicating low difficulty in 

organizing the clusters. It can be defined by (Equation 7): 

 

𝑀𝑃𝐸 = 
−∑ ∑ 𝑢𝑖𝑘 log(𝑢𝑖𝑘)/𝑛

𝑐
𝑖=1

𝑛
𝑘=1

log 𝑐
 (7) 

 

Combinations of more than one measure of FPI with NCE and FPI with 

MPE are common (Table 7). In both cases, one must seek the number of clusters 

in which the values of both measures are the lowest. Unfortunately, there may be 

times when these measures do not agree. In these situations, the choice of value 

may be subjective or require the help of other measures, such as ICVI. 

 

Table 7. Combination of most used measures for choosing the number of 
management zones (MZs) 

Measure 
N° of 

papers 
Papers 

Fuzziness Performance 
Index (FPI) e Modified 

Partition Entropy (MPE) 
39 

(Fridgen et al. 2004; Li et al. 2007; Kyaw et al. 2008; Vitharana et al. 2008a; Li 
et al. 2008; Morari et al. 2009; Xin-Zhong et al. 2009; Guastaferro et al. 2010; 
Moral et al. 2010; Arno and Martinez-Casasnovas 2011; Jiang et al. 2011; 
Bansod et al. 2012; Davatgar et al. 2012; Jiang et al. 2012; Roberts et al. 2012; 
Alves et al. 2013; Córdoba et al. 2013; Li et al. 2013; Lin et al. 2013; Scudiero et 
al. 2013; Chang et al. 2014; Patil et al. 2014; Caires et al. 2015; Rodrigues and 
Corá 2015; Santos and Saraiva 2015; Tripathi et al. 2015; Peralta et al. 2015; 
Boluwade et al. 2016; Ortuani et al. 2016; Gili et al. 2017; Servadio et al. 2017; 
Yari et al. 2017; Shukla et al. 2017; Behera et al. 2018; Schwalbert et al. 2018; 
Martínez-Casasnovas et al. 2018; Khan et al. 2018; Verma et al. 2018; 
González-Fernández et al. 2019) 

Fuzziness Performance 
Index (FPI) e Normalized 

Classification Entropy 
(NCE) 

17 

(Kitchen et al. 2002; Molin and de Castro 2008; Song et al. 2009; Valente et al. 
2012; Meirvenne et al. 2013; Urretavizcaya et al. 2014; Yao et al. 2014; Gavioli 
et al. 2016; Oldoni and Bassoi 2016; Schenatto et al. 2016a; Schenatto et al. 
2016b; Sobjak et al. 2016; Bottega et al. 2017; Schenatto et al. 2017b; Betzek 
et al. 2018; Betzek et al. 2019; Bazzi et al. 2019). 

 

The Variance Reduction (VR) (Gavioli et al. 2016) is a modification of the 

relative variance (RV) proposed by Webster and Oliver (1990) (Xiang et al. 2007, 

Dobermann et al. 2003, Ping and Dobermann 2003). It is calculated for the target 

variable, with the expectation that the sum of data variances from delineated MZs 

is smaller than the total variance (Equation 8): 

 

𝑉𝑅 = (1 −
∑ 𝑊𝑖 ∗ 𝑉𝑚𝑧𝑖
𝑐
𝑖=1

𝑉𝑓𝑖𝑒𝑙𝑑
) ∗ 100 (8) 
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where c is the number of MZs, Wi is the proportion of the field of the i-th MZ of the 

total field; Vmzi is the data variance of the i-th MZ; and Vfield is the variance of the 

data to the field. 

The Improved Cluster Validation Index (ICVI) (Gavioli et al. 2016) was 

proposed to solve the possible problem of non-agreement of the FPI, MPE, and 

VR measures in the delineation of MZs. The higher the VR value and the lower 

the FPI and MPE values, the closer the ICVI will be to 0; the lower the ICVI, the 

better the result of the clustering method. It can be determined as follows 

(Equation 9): 

 

𝐼𝐶𝑉𝐼𝑖 =
1

3
∗ (

𝐹𝑃𝐼𝑖
𝑀𝑎𝑥{𝐹𝑃𝐼}

+
𝑀𝑃𝐸𝑖

𝑀𝑎𝑥{𝑀𝑃𝐸}
+(1 −

𝑉𝑅𝑖
𝑀𝑎𝑥{𝑉𝑅}

)) (9) 

 

where 𝐹𝑃𝐼𝑖 is the FPI value of the i-th (variable selection) method; 𝑀𝑃𝐸𝑖 is the 

MPE value of the i-th method; 𝑉𝑅𝑖is the VR value of the i-th method; and 

𝑀𝑎𝑥{𝑖𝑛𝑑𝑒𝑥_𝑋}represents the maximum value of the index_X among the n 

variable selection methods. 

The Smoothness Index (SI) (Gavioli et al. 2016) gives the pixel-by-pixel 

frequency of classes change in a thematic map in the horizontal and vertical 

directions and along the diagonal. For maps with more uniform classes, SI tends 

to 100, while maps with many exchanges between classes tend to lower values. 

It can be calculated by (Equation 10): 

 

𝑆𝐼 = 100 −(
∑ 𝐶𝐻𝑖

𝑘
𝑖=1

4𝑃𝐻
+
∑ 𝐶𝑉𝑗
𝑘
𝑗=1

4𝑃𝑉
+
∑ 𝐶𝐷𝑅𝑙
𝑘
𝑙=1

4𝑃𝐷𝑅
+

∑ 𝐶𝐷𝐿𝑚
𝑘
𝑚=1

4𝑃𝐷𝐿
) ∗ 100 (10) 

 

where 𝐶𝐻𝑖
 is the number of changes on row i (horizontal); 𝐶𝑉𝑗 is the number of 

changes in column j (vertical); 𝐶𝑅𝐷𝑙
 is the number of changes on diagonal l 

(diagonal right - DR); 𝐶𝐿𝐷𝑚is the number of lines on the diagonal m (diagonal left 

- DL); k is the maximum number of pixels in a row, column or diagonal; 𝑃𝐻 is the 

possibility of changes in horizontal pixels; 𝑃𝑉is the possibility of changes in 

vertical pixels; 𝑃𝐷𝑅is the possibility of changing in the diagonal right ; and 𝑃𝐷𝐿is 

the possibility of changes in the diagonal left . 
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The average silhouette coefficient (ASC) is obtained from the silhouette 

coefficient (SC) (Rousseeuw 1987), which is an evaluation index that measures 

both levels of satisfactory internal formation and external separation of groups. 

The SC value for point p, denoted by scp, is calculated using the average of the 

intra-group distances ap and the average of the inter-group distances bp 

(Equation 11).  

 

𝑠𝑐𝑝 =
𝑏𝑝 − 𝑎𝑝

𝑀𝑎𝑥(𝑎𝑝, 𝑏𝑝)
 (11) 

 

where ap is the average of the distances between point p and all other points in 

the same group, and bp is the average of the distances between point p and all 

points in the closest group containing p.  

The group silhouette coefficient (GSC) is obtained by calculating the 

average of the silhouette coefficients for the points of this group, and the value 

that corresponds to the ASC coefficient of k groups is obtained by calculating the 

average of the GSC values of the k groups. The ASC values vary from -1 to 1; -

1 indicates an incorrect grouping, and 1 indicates groups with the best intra-group 

formation and the best possible inter-group separation. 

In the Analysis of Variance (ANOVA), the target variable (usually yield) is 

compared between classes by using the average target variable and performing 

the Tukey’s range test to identify whether the generated classes showed 

significant differences (first, we confirmed that there was no spatial dependence 

within each class). 

Despite the plurality of measures, the most usual measures, used together 

or not, are mainly related to the clustering methods based on FCM. A few, such 

as VR, ASC, SI, and Tukey's test (ANOVA), can be used regardless of the 

algorithm used for the delineation. It is expected that, with the increase in 

research related to other algorithms for the delineation of MZs, there will also be 

an increase in the number of measures used to define the ideal number of MZs. 

Although they have not appeared consistently in SLM, some of the 

measures often used that deserve to be highlighted are: 
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Fragmentation index (FI%): it takes into account how higher is the number 

of zones (NMZ) in comparison with the number of classes (NC). If each class 

corresponds to a single zone, then the estimated fragmentation by FI% will be 

zero. If, for example, for a four-class design, five zones are created, then the FI% 

will be 25%. The higher the fragmentation of delineation, the higher the FI% 

(Equation 12): 

 

𝐹𝐼% = 100
𝑁𝑀𝑍 − 𝑁𝐶

𝑁𝐶
 (12) 

 

Global Quality Index (GQI): it looks for finding the best number of classes 

during ZMs delineation, taking into account the values of ICVI, SIr and FIr 

(Equation 13): 

 

𝐺𝑄𝐼𝑖 =
𝐼𝐶𝑉𝐼𝑖 ∗ (100 + 𝐹𝐼𝑟𝑖)

𝑆𝐼𝑟𝑖
 (13) 

 

Kappa coefficient (K) (Cohen, 1960): this index is not used to validate the 

clustering process but to compare the agreement of two MZ delineation 

approach. Landis and Koch (1977) proposed the following classification: 0 < K ≤ 

0.2 indicates no agreement, 0.2 < K ≤ 0.4 weak agreement, 0.4 < K ≤ 0.6 

moderate agreement, 0.6 < K ≤ 0.8 strong agreement, and 0.8 < K ≤ 1 very strong 

agreement.  

Coefficient of relative deviation (CRD) (Coelho et al., 2009): it calculates 

the mean difference in modulus of the interpolated values on a thematic map 

when compared to a map taken as a reference (Equation 14): 

 

𝐶𝑅𝐷 =∑𝐴𝐵𝑆(

𝑛

𝑖=1


𝑍𝑖𝐵 − 𝑍𝑖𝐴

𝑍𝑖𝐴
) (14) 

 

where ZiA is the estimated value at the location i on the reference map, ZiB is the 

value at location i on the map to be compared, and n is the total number of 

interpolated locations on the yield maps.  
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Mean absolute difference (MAD, Equation 15): it computes the mean 

absolute difference among values on the two maps 

 

𝑀𝐴𝐷 =
∑ 𝐴𝐵𝑆(𝑍𝑖𝐵 − 𝑍𝑖𝐴
𝑛
𝑖=1 )

𝑛
 (15) 

 

 

Possible economic or environmental advantages of the adoption of 

management zones (Question 4) 

 

Despite the complexity involved in the procedure, delineating MZs in itself 

is not an end goal. Instead, its premise is to serve as a subsidy for decision-

making on how to allocate resources in the field better, aiming at a more rational 

use with less environmental impact and higher profitability. Despite this, most 

studies only present the ideal number of MZs and the MZs map as the final 

product, often omitting if the zones are significant and the possible economic or 

environmental advantages of their adoption. This remark was also made by 

Nawar et al. (2017). 

It is important to perform a statistical analysis of the MZs delineated to 

validate the zones division. One way to do this is with ANOVA where the target 

variable (usually yield) is compared between classes by using the average target 

variable and performing the Tukey’s range test to identify whether the generated 

classes showed significant differences (first, we confirmed that there was no 

spatial dependence within each class). Observing   
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Table 6, one sees that only 46 (approximately 28%) of the selected papers 

did a consistent statistical analysis (ANOVA) to validate the existence of 

considerable differences between the resulting zones to justify this division. An 

even smaller number (8) of studies analyzes the economic impact of adopting the 

use of MZs. 

Kyaw et al. (2008) worked with five areas with chlorosis-prone soybeans 

and corn to delineate MZs for its control, concluding that the control of chlorosis 

using MZs did not increase yield but reduced Fe application considerably. In one 

case, the application was reduced to just 43% of the total area, in another, to 

41%, lowering the average cost per hectare. Robertson et al. (2008) conducted 

a study on wheat with 199 properties, ranging from 10 to 172 ha, and found out 

an economic benefit between US$ 5.00/ha and US$ 40.00/ha with the adoption 

of MZs. This benefit represents a significant differential for producers in Western 

Australia since the region has a margin of around US$ 100.00 ha-1. 

Velandia et al. (2008) analyzed the economic impact of four approaches 

of the N application in cotton: (1) uniform N rate application based on an 

agronomic optimum (URA), (2) uniform N rate application based on an economic 

optimum (URE), (3) variable-rate N application based on the economic optimum 

for each of the management zones established through our spatial procedure 

above (VRN, developed at this work), and (4) variable-rate N application based 

on landscape position (VRL). Their results demonstrated that the VRN application 

could result in net returns over US$ 5.28 ha-1, US$ 6.17 ha-1, and US$ 7.28 ha-1, 

when compared to VRL, URE, and URA, respectively. 

In a study involving six producer fields cultivated with corn, Roberts et al. 

(2012) developed MZs for the N control. Two areas showed no correlation 

between yield and N, while in the other four, they found that the variable-rate N 

application according to soil-based MZ showed a gain of –US$ 33 ha-1, 

US$ 145 ha-1, US$ 0, and US$ 32 ha-1. Hörbe et al. (2013) assessed the 

efficiency of variable-rate seeding of corn with delineated MZs, split into low, 

medium, and high crop performance zones. They reduced the recommended 

plant population by 31 % in the low management zone resulted in a yield increase 

of 1.5 Mg ha-1 and induced an increase of US$ 342 ha-1 in partial net economic 

return. Increasing the recommended plant population by 13% in the high 

management zone resulted in an increase of 0.91 Mg ha-1 in grain yield and 
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induced an increase of US$ 113 ha-1 in partial net economic return. Also, working 

with corn, Bernardi et al. (2018) found three as the ideal number of classes. The 

class with the highest profitability had a profit of 12% higher than the class with 

the lowest profitability. 

Whetton et al. (2018) evaluated the economic viability and environmental 

benefit of adopting a variable-rate fungicide application (VRSA) and selective 

harvest (SH) in winter wheat. Results showed that in this study VRFA allowed for 

fungicide reductions from 22 to 26% when compared to homogeneous rate 

fungicide application (HRFA). The net saving after considering sensing costs was 

£67 ha−1, which is roughly equivalent to €80 or $90 ha−1 per year. The SH of 

the high and low-quality grain categories would result in a reduced risk of 

mycotoxin contaminated grain, reaching a human consumer. This study was 

restricted to a single field but demonstrates the potential of fungicide reductions 

and the economic viability of the MZ concept. 

Schwalbert et al. (2018) compare four different wheat fertilization 

strategies two producer fields: (1) traditional N fertilization management (constant 

rate, CR), (2) variable-rate N application based on crop remote sensing (CS), (3) 

VNR based on MZs (MZs), (4) integrated approach combining MZs and crop 

sensing (MZ+CS). They concluded that the integrated version (MZ+CS) 

presented an average economic return of US$ 42 ha-1 (field 1) and US$ 32 ha-

1 (field 2) higher than the CR. However, when considering only the highest yield 

MZ, the values change to US$ 80 ha-1 and US$ 40.00  ha-1 for fields 1 and 2, 

respectively. 

Despite the small number of studies validating the economic return of 

using MZs, the advantages of their adoption in all cases were verified. 

 

Software used for delineating management zones (Question 5) 

 

Three main questions must be addressed for an efficient delineation of 

MZs: (1) what data set should be used?; (2) what algorithm to delineate the MZs?; 

and (3) what is the optimal number of MZ classes? (Fridgen et al. 2004). Although 

they seem to be simple questions, each unfolds in virtually dozens of options, 

which have specific advantages and disadvantages. For a correct understanding 
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and analysis, they often require the knowledge of several areas, creating great 

difficulty for adopting MZs in agriculture. 

Some of these difficulties can be reduced by using specialized software. 

Despite many software for the PA, few are directed to delineating MZs (Table 8). 

Golden Software Surfer, ESRI ArcGIS, and the R software package are 

commonly used. Despite allowing the delineation of MZs, they do not have all the 

desired functionality since this is not the focus of these products, requiring to go 

to other computer programs to perform the entire process. Furthermore, when 

they have all the necessary functionalities, they are not user-friendly. Another 

determining factor to hinder access to software is because most present only paid 

commercial licenses, discouraging its adoption by non-specialized people since 

they may not realize the advantages of its use at first. 

Among the specific software for delineation of MZs, the following were 

well-known (organized by release date): (1) FuzME (Minasny and McBratney 

2002), Management Zone Analyst (MZA) (Fridgen et al. 2004), (2) Software for 

the Definition of Management Zones (SDUM) (Bazzi et al. 2013; Bazzi et al. 

2019), (3) ZoneMAP (Zhang et al. 2010), and (4) automatic software for 

delineating MZs proposed by Albornoz et al. (Albornoz et al. 2018). 
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Table 8. Software used for the delineation of management zones by the papers 
included in this review 

Name N* 
main functions 

used 
License OS* Developer Site 

ArcGis/ 
ArcMap 

41 
Maps, 

classification  
Commercial 

(paid)  
Windows 

Web 
ESRI https://www.arcgis.com/ 

MZA 31 Delineation of MZ  free Windows 

Cropping 
Systems 

and Water 
Quality 

Research 

https://www.ars.usda.gov
/research/software/downl
oad/?softwareid=24&mo

decode=50-70-10-00 

SAS 20 
Statistical 
analysis, 

classification 

Commercial 
(paid) 

Windows 
Linux 

z/OS 

SAS https://www.sas.com 

SPSS 18 
Statistical 
analysis 

Commercial 
(paid) 

Windows 

Linux Mac 
IBM 

https://www.ibm.com/sps
s 

R 14 

Statistical 
analysis, 

classification 
Selection of 

variables 

free (Open 
Source) 

Windows 

Linux 

Mac 

r-Project 
(Open 

Source) 

https://www.r-project. 
org/ 

FuzMe 13 Delineation of MZ free Windows 

Precision 
Agriculture 
Laboratory, 
University of 

Sydney 

https://sydney.edu.au/ 
agriculture/pal/ 

GS+ 9 
Geostatistical 

analysis, 
interpolation 

Commercial 
(paid) 

Windows 
Gamma-
design 

https://geostatistics.com 

ISATIS 8 
Geostatistical 

analysis 
Commercial 

(paid) 
Windows 

Linux 
Geovarian-

ces 
https://www.geovariance

s.com 

Surfer 6 Maps 
Commercial 

(paid) 
Windows 

Golden 
Software 

https://www.goldensoftw
are.com 

MatLab 5 
Mathematical 

analysis, 
modeling 

Commercial 
(paid) 

Windows 

Linux 

Mac 

MathWorks 
https://www.mathworks.c

om/ 

Statistica 5 
Statistical 
analysis 

Commercial 
(paid) 

Windows StatSoft http://www.statsoft.com 

Vesper 5 Interpolation Share-ware Windows 

Precision 
Agriculture 
Laboratory, 
University of 

Sydney 

https://sydney.edu.au/ 
agriculture/pal/ 

SDUM 5 

Statistical 
analysis, 

Statistical and 
geostatistical 

analysis, maps 

free Windows 

Grupo 
Agricultura 
de Precisão 
da Região 
Oeste do 
Paraná 

http://ppat.md.utfpr.edu.b
r/ 

ERDAS 
Imagine 

4 
Maps, image 

Analysis 
Commercial 

(paid) 
Windows 

Hexagon 
Geospatial 

https://www.hexagongeo
spatial.com 

Unscrambl
er 

3 
Statistical 
analysis, 
modeling  

Commercial 
(paid) 

Windows 
Camo 

Analytics 
https://www.camo.com 

Krig-ME 3 
 

3 Delineation of MZ ***    

Not 
specified 

7      

Others 38      

* N: number of papers using the software. ** OS: operating system. *** Download not available to collect information. Only software that 

has been used in at least 3 papers is mentioned. A paper can use more than one software. 
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The FuzME is a software provided by the Precision Agriculture Laboratory 

(PA Lab) of the Australian Centre for Precision Agriculture (ACPA), University of 

Sydney, Australia. It is available for Microsoft Windows 95/NT or superior, and its 

most current version is 3.5c. The used algorithm is the FCM (with a few variants), 

and the outputs are all in text files. The software features a simplified graphical 

interface, consisting essentially of three toolbars. The first presents the options 

for selecting the input files with the respective variables, output files, internal 

control files, and analysis title. The second presents the options for creating 

clusters, such as distance metrics and fuzzy exponents, among others. The third 

presents the options to allow resampling using the bootstrap and Jackknife 

methods. Among the possible options for adjusting the clustering algorithm are: 

(1) choice of the distance metric (Euclidean, diagonal, and Mahalanobis); (2) 

choice of the fuzzy exponent; (3) definition of the minimum and the maximum 

number of classes (between 1 and 100); (4) analyzing fuzzy discriminants; (5) 

configuration of the initial random values of the definition of the members and the 

number of attempts, the stopping criterion, the maximum number of iterations, 

and (6) choice of the algorithm (classic FCM, extra-grade FCM, equal-area FCM, 

and FCM with covariance matrix). 

Although the simplified interface is a positive point for its use, as well as 

the definition of some standardized parameters, it is impossible: (1) visualize the 

delineated MZs, (2) perform interpolations, (3) adjust the sample size, (4) 

visualize the behavior of the input variables, (5) calculate statistics of the MZ 

quality; and (6) export the results. Another limiting factor is the need to run on 

computers using a specific operating system (PC Windows environment), 

considering the dissemination of ubiquitous computing nowadays. 

MZA is the most used among the specific software for the delineation of 

MZs (Table 8). It is made available by the Agricultural Research Service (ARS) 

of the United States Department of Agriculture (USDA), USA. It is available for 

Microsoft Windows 95/NT or superior, and its most current version is 1.0.1. MZA, 

like FuzME, also used the FCM algorithm. 

It also presents a simplified graphical interface and, to perform 

classification, you must follow the instructions in a sequence of four menus that 

present the definition of the parameters step by step. Initially (start window), you 

must provide the input file in CSV text format (comma-separated values), 
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containing the variables and their values. In this same window, one or more 

variables to be used must be chosen. The following window, Explore Data, allows 

descriptive data statistics to be computed and saved in a text file: the mean, 

standard deviation, coefficient of variation, minimum and maximum, sums of 

squares, and variance and covariance matrices. The third window, Delineate 

Zones, presents the options for performing the classification with FCM: the fuzzy 

exponent; the measure of similarity (Euclidean, diagonal, or Mahalanobis); the 

maximum number of iterations; the convergence criterion; the minimum and 

maximum number of MZs; and the location and name of the output data file.  

The last window, Post Classification Analysis, presents two graphs of the 

performance indices (NCE and FPI) as a function of the number of zones. The 

authors consider this last window to be one of the most critical differentials of 

MZA because it helps to choose the ideal number of zones, avoiding subjectivity. 

It is worth remembering that the ideal number of these measures may still not be 

following the restrictions of field mechanization, considered purely mathematical 

analyses of the generated clusters. As in FuzME, the user-friendly interface and 

the definition of a precise sequence of steps for delineating MZs are positive 

points. Another coincident factor of both software is the lack of data processing 

tools, such as interpolation and data size adjustment for a common grid. Also 

important is that, depending on the characteristics of the input data, the resulting 

MZs can contain much-fragmented information, requiring the use of external 

software for smoothing and visualizing the MZs. A third problematic element 

concerns one of its main advantages: choosing the ideal number of clusters. The 

NCE and FPI measures cannot necessarily agree on the ideal number of clusters, 

returning subjectivity to the analyst since the software does not indicate which is 

preferred over the other. A final limitation is the need to run on computers using 

a specific operating system (PC Windows environment). 

SDUM (Bazzi et al. 2019) is software made available by the Paraná 

Precision Agriculture Team, from the western region of Paraná, Brazil. It is 

available for Microsoft Windows XP platform or superior, and the current version 

is 1.0. The execution outputs can be given in the text, images, PDF, and KLM 

(Google Earth) formats. The software allows the insertion of one or more layers 

of georeferenced sample data. Entries are in the text file and have a user-friendly 
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data importer. It also allows data interpolation through inverse distance weighting, 

moving average, and nearest neighbor. 

Thematic maps can be generated with the interpolated data. To do this, 

we define the type of geometry, which can be continuous surfaces or points; the 

interpolator parameter; and the radius parameter, consisting of the distance the 

samples will be selected for interpolation. There are also tools for descriptive 

statistical analysis and statistical analysis of spatial correlation. 

MZs can be delineated by empirical methods (data normalization by 

means and standard deviation) and clustering (k-means and FCM). The number 

of classes and the number of iterations must be defined when using the k-means 

method. When using FCM, the number of classes, the fuzzy exponent, and the 

maximum error are defined. The SDUM also calculated performance indices (FPI, 

VR, and MPE), ANOVA, and Tukey’s test. 

Like previous software, the user-friendly interface and the definition of a 

clear sequence of steps for delineating MZs are important positive points in 

SDUM. In addition, important features when compared to previous programs: 

data interpolation tools, spatial correlation analysis, more evaluation measures of 

the MZs quality (FPI, VR, MPE, ANOVA, and Tukey’s test), generation of 

thematic maps, and the maps of the MZs, organization in the form of projects, 

and data storage in a database.  Finally and most importantly, the SDUM can 

present the delineated MZs, while FuzME and MZA must use a GIS or desktop 

mapping software. The presence of these elements in a simple interface 

considerably increases the user's independence regarding the use of 

complementary software and in the domain of knowledge from other areas. 

As for disadvantages, we can highlight that, as in the previous software, 

depending on the characteristics of the input data, the resulting MZs can contain 

much-fragmented information, requiring the use of external software to smooth 

the MZs. A final limitation is the need to run on computers using a specific 

operating system. 

ZoneMap was unavailable when developing this paper, due to financial 

reasons, according to its developers. Therefore, it could not be evaluated. 

The automatic software for delineation of MZs proposed by Albornoz et al 

(2018) is a software made available (in test version) by the Faculty of Engineering 

and Water Sciences (Facultad de Ingeniería y Ciencias Hídricas) of the National 
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University of the Coast (Universidad Nacional del Litoral), Argentina. According 

to the authors, there are desktop and web versions of the software. The 

delineation algorithm is the FCM, and the outputs are in the ESRI shapefile. The 

web version has a straightforward interface, following only a sequence of steps. 

The first step is to upload the file containing the variables for analysis. Vector data 

(such as yield or apparent soil conductivity) must be in text files (CSV, dat, or txt), 

and raster data in GeoTiff format. 

In the next step (screen), all input variables are interpolated to the same 

user-defined grid by the Sibson (without using squares), Sibson (with squares), 

Farin, or Quadratic methods, having defined the boundaries of the map by the 

largest coincident area for all variables. The third screen defines the parameters 

of the FCM algorithm: minimum and the maximum number of zones, the fuzzy 

exponent, and the convergence value. 

On the next screen, the MZs maps are presented for each number of 

zones. Also, on this screen, there is a table given the three evaluation measures 

of the MZs quality (NCE, FPI, and Xie and Beni (XB)), as well as a graph of the 

Euclidean distance of these measures (EcD=√𝐹𝑃𝐼2 + 𝑁𝐶𝐸2 + 𝑋𝐵2) as a function 

of the number of MZs. This distance was implemented to avoid the subjectivity of 

individual measures if they disagreed on a minimum value of MZs. This screen 

also presents the option for how many classes one wishes to continue the 

process. On the next screen are the options for filtering (rectification) the map: 

the mask size (3x3, 5x5, and 7x7 pixels), the type of filter (medium or mode), the 

minimum size of the area in m2,  and the number of running times of erosion and 

dilation. 

The final screen presents the results of the original map image and the 

filtered map image and the option to download the resulting ESRI shapefile. The 

graphical interface of this software is highly minimalist and user-friendly, 

presenting a precise sequence of steps for the delineation of MZs and, therefore, 

considered decisive positive points. There are two notable highlights of this 

software to FuzME and MZA: (1) the availability of data interpolation and 

conversion tools for a common size sample grid, in a fully automated form, (2) 

more comprehensive evaluation measures of the MZs quality (NCE, FPI, XB, 

EcD). Another substantial differential is the possibility of smoothing the maps 

generated using algorithms from digital image processing, which aim to create 
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smoother transition edges and eliminate small MZs that, in practice, cannot be 

worked on in the field. 

Another positive point to be highlighted is the existence of the desktop 

version and a web platform version. This gives independence to the user 

platform, working on virtually any operating system. Another element is the 

transfer of the processing load, usually high in this type of procedure, from the 

user's machine to a web server. The counterpart is the necessity of a stable 

connection to the Internet, the availability of the server, and additional issues of 

security/confidentiality of the data. 

As for the disadvantages, we can highlight the lack of tools to conduct 

statistical and geostatistical analysis. However, interpolation tools, for example, 

are already advantageous when compared to FuzME and MZA. Table 9 

compares the main features of the specific software for the delineation of MZs. 

  

Table 9. Features of specific software for  delineation of management zones 
(MZs) 

Software / Feature 
FuzME MZA SDUM 

Albornoz et al. 
(2018) 

Multiplataform 
   x (Web) 

Input data visualization / data 
description tools  x x  
Pre-processing tools 

  x x 

Results export type 
Text Text 

Text, 
image, 

PDF, KLM Shape file 

MZ evaluation 
 x x x 

Map Generation 
  

x x 

Intuitive interface x x x x 

 

 

Including new articles  

After selecting articles through systematic literature and snowballing, four 

papers about a new web platform AgDataBox (ADB) were found (Bazzi et al. 

2019; Michelon et al. 2019; Dall'Agnol et al. 2020; Borges et al. 2020). This 

platform aims at integrating data, software, procedures, and methodologies for 
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Digital Agriculture. It is a joint project coordinated by the Western Paraná State 

University (Unioeste) and the Federal University of Technology - Paraná 

(UTFPR) with the cooperation of the Colorado State University (CSU), the United 

States Agricultural Research Service (USDA) in Columbia, the University of 

California Davis (UC Davis), the University of São Paulo (ESALQ/USP), and the 

Brazilian Agricultural Research Corporation (Embrapa). This platform is a 

continuation of the project for software SDUM  (Bazzi et al. 2013). This web 

Platform has an Application Programming Interface (API), which consists of a set 

of resources accessible through the Hypertext Transfer Protocol (HTTP) for 

transferring request and response messages expressed in JavaScript Object 

Notation (JSON) format. The ADB-API, where the data and processing routines 

are centered, enables the interoperability of several applications. Five 

applications are under development: (1) ADB-Mobile, (2) ADB-Map, (3) ADB-

Admin, and (4) ADB-IoT.  The application ADB-Map is the application that works 

with spatial data aiming to create thematic maps and management zones. Among 

the functionalities of ADB-Map are: (1) data importing/exporting, (2) data analysis 

and filtering, (3) data normalization, (4) data interpolation and generation of 

thematic maps, (5) delineation and evaluation of management zones, 

encompassing variable selection methods, empirical and data clustering 

methods, and evaluation statistics, (6) management zone rectification methods, 

(7) application map generation and exporting, and (8) optimal placement of 

proximal sensors for PA. Because this platform is not already available on the 

web, a detailed discussion of its performance was impossible.  
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3.2. Examples of management zones 

 

Several examples of ZMs will be presented, together with a brief 

discussion of the data that originated them, to demonstrate several situations in 

which ZMs can be used. 

 

 

3.2.1. Target values of the management zones 

 

 

Yield (productivity) management zones 

 

Usually, on MZs delineation, the yield is used as target values. Kitchen et 

al. (2005) researched two Missouri claypan soil fields to answer the question of 

whether ECa and elevation could be used to delineate productivity zones (SPZ) 

that would agree with productivity zones delineated from yield map data (YPZ). 

Fig.  presents the results for Field 2 that showed the best performing 

combinations of ECa and elevation variables, which gave a 60-70% agreement 

(overall accuracy) between YPZ and SPZ. 

 

Fig. 21. Reference yield zone maps (left) compared to the best performing 
productivity zone map derived from unsupervised clustering of ECa and elevation 
(right) 

Source: Kitchen et al. (2005). 
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Kweon (2012) developed a delineation procedure for site-specific 

productivity zones with a fuzzy logic system using soil properties obtained from 

on-the-go electrical conductivity (ECa) and organic matter (OM) sensors and 

topographic attributes in two typical central Kansas upland fields (Field 1, 57 ha, 

and Field 2, 18 ha). EC, OM, slope, and curvature were used as input variables, 

and yield was set as an output variable. Using the quantile classification, the 

authors divided all thematic maps into three classes (low, medium, and high) 

(each class has the same number of data points). Fig. 22 shows continuous EC 

and OM maps, and Fig. 23, the maps of terrain slope and curvature. They 

constructed three types of MZs: 1) 5-year mean normalized yield map (Fig. 24a); 

2) Productivity map, generated by a producer’s decision-making knowledge and 

the fuzzy logic system (Fig. 24b); and 3) FCM map using EC, OM, slope, and 

curvature (Fig. 24c). The spatial agreement between the productivity and the 5-

year-mean yield maps showed an overall accuracy and kappa coefficient of 0.57 

and 0.35. The productivity map presented a better agreement with the normalized 

yield map than the FCM map. All the presented figures are for Field 2. 

 

 

                               a)                                                                b) 

Fig. 22. EC and OM maps generated by the on-the-go sensor for Field 2 

Source: Kweon (2012). 
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                               a)                                                                b) 

 

Fig. 23. Terrain slope and curvature maps for Field 2 

Source: Kweon (2012). 

 

   

a) normalized yield 

map 

b) productivity MZs c) FCM map. 

Fig. 24. 5-year mean normalized yield map (a). Productivity map generated by 

the developed fuzzy logic system (b). FCM map (c) (all figures are for Field 2) 

Source: Kweon (2012). 

 

3.2.2. Chlorosis management zones 

 

 

Kyaw et al. (2008) evaluated delineating chlorosis MZs using VI derived 

from aerial imagery, on-the-go measurement of soil pH, and ECa. The study was 

conducted at six sites in 2004 and 2005, and generally, the yield was predicted 

best with the combination of NDVI and deep ECa. The delineation of chlorosis 

MZs from aerial imagery combined with soil ECa appears to be a useful tool for 

the site-specific management of iron chlorosis. Fig. 25 illustrates the relationship 

of chlorosis zones to grain yield, and, in general, the northern part of this field can 
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be considered chlorosis-prone. This area generally coincides with the Gibbon 

loam (Gg) and Gayville-Caruso (Gc) soil series, fairly poorly drained, with salt 

accumulation in the Gayville series occasionally causing dispersion of the soil 

colloids (classified as Leptic Natrustolls). 

 

 

   (a)       (b)  

Fig. 25. Chlorosis-prone area (a) (zone 1, gray shading) delineated from the 
combination of ECa and NDVI; soybean yield (b) (2005); and aerial photograph 
(2005), with soil series boundaries superimposed. All figures from site 1  

Source: adapted from Kyaw et al. (2008). 
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3.2.3. Apparent electrical conductivity management zones 

 

 

Yan et al. (2007a) studied a 10.5-ha site and measured the ECa. 

Measurements were performed thrice in situ in the topsoil (0-20 cm) across the 

field to identify the MZs. The results indicated high coefficients of variation for 

topsoil salinity over all three samplings. However, the spatial structure of the 

salinity variability remained relatively stable with time. Kriged choropleth maps, 

drawn based on spatial variance structure of the data, showed the spatial trend 

of the salinity distribution and revealed areas of consistently high or consistently 

low salinity (Fig. 26); a temporal stability map indicated some stable and unstable 

regions (Fig. 27). Cluster analysis divided the site into three potential MZs (Fig. 

28a) based on the spatiotemporal characteristics, each one with different 

characteristics that could impact the way the field was managed. Visually, the 

pattern of cotton yield appeared to correspond quite well with the trend of 

management classes (Fig. 28b). Generally, the highest yields occurred in class 

1, and the lowest yields in class 3. 

 

 

 

Fig. 26. Smoothed choropleth maps produced by ordinary kriging for apparent 
electrical conductivity (ECa) at three different sampling dates 

Source: Yan et al. (2007a). 
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            (a)                                                                (b) 

Fig. 27. Spatial trend map composed of the mean apparent electrical conductivity 
(ECa) (a) and temporal stability map produced for ECa based on the CVi 
(coefficient of variation at the ith sampling point) (b) 

Source: Yan et al. (2007a). 

 

 

 

  (a)       (b) 

Fig. 28. Spatial distribution of the three classes of practical management zones 
across the field using cluster analysis (a) and the spatial distribution of cotton 
yield interpolated by kriging (b). 

Source: Yan et al. (2007a). 

 

 

3.2.4. Soil available water content management zones 

 

 

De Lara et al. (2018) studied the characterization of the spatial distribution 

of soil water content (SWC) at the field scale by the ECa. They found out that the 

delineated soil ECa MZs (Fig. 29) can effectively characterize macro-scale in-

field SWC variability between zones throughout the crop season. Furthermore, 

the inclusion of OM and salt content data significantly improved the SWC 

assessment according to the ANOVA test. 
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Fig. 29. Comparison of management zones delineated with using soil ECa 
measured up to 1.5 m depth and management zones delineated using soil ECa 
measured up to 1.5 m depth in addition to organic matter and soil salinity for 
ARDEC. Differences in the two techniques are presented as gray, referred to as 
“disagree” in the legend. 

Source: De Lara et al. (2018). 

 

 

3.2.5. Quality-based management zones 

 

 

Tagarakis et al. (2013) delineated MZs using fuzzy clustering techniques 

in a 1.0-ha commercial vineyard in Central Greece during 2009 and 2010. They 

used ECa, NDVI at different stages (NDVI 1, NDVI 2, NDVI 3, NDVI 4, and NDVI 

5) during the vine growth cycle, yield, and grape quality index (sugar/acidity ratio 

of the grape must). Soil properties, yield, and grape composition parameters 

showed high spatial variability. Maps of two MZs were produced using the MZA 

software. Fig. 30 shows the yield-based MZs using soil depth, NDVI 1, NDVI 2, 

NDVI 3, and NDVI 4 (Fig. 30a), and quality-based MZs using ECa, NDVI1, NDVI 

2, NDVI3, and NDVI 4 (Fig. 30b). They concluded that these maps presented a 

high degree of agreement, from 79.2 to 89.6%. 
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Fig. 30. Yield-based management zones (soil depth, NDVI 1, NDVI 2, NDVI 3, 
NDVI 4) and quality-based management zones (ECa, NDVI 1, NDVI 2, NDVI 3, 
NDVI 4) using fuzzy clustering from a commercial vineyard in Central Greece. 
Data from the 2009 agricultural year 

Source: Tagarakis et al. (2013). 

 

 

3.2.6. Weed Management Zones 

 

 

In the case of MZs for agrochemicals applications, the purpose is to use 

them immediately and just once. Fig. 31 and Fig. 32 present the MZs delineated 

using small, and large leaves weed plants, respectively (Rodrigues, 2009). 

 

 

Fig. 31. Management zones of small leaves weed plants in a 1.24 ha pear orchard 

Source: Rodrigues, 2009. 
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Fig. 32. Management zones of large leaves weed plants in a 1.24 ha pear orchar 

Source: Rodrigues, 2009. 

 

 

3.2.7. Vegetation Indices Management Zones 

 

 

In the case of MZs for VI classification, like MZs for agrochemicals 

applications, the purpose of the research conducted by Costa et al. (2019) was 

to use them immediately and just once. Using geostatistics and multivariate 

analysis, they delimited homogeneous zones (HZs) of different VIs to identify 

vegetation patterns in Cabernet Franc and Cabernet Sauvignon vineyards. Using 

Crop Circle ACS-430 active sensor and simultaneously measuring crop spectral 

reflectance at 670 nm (ρR, red), 30 nm (ρRE, red edge), and 780 nm (ρNIR, near-

infrared). Despite the variations of the VIs spatial distribution patterns, the 

multivariate analysis resulted in a representative categorization of the grapevine 

vegetative vigor and delimitation of HZs for this characteristic. 
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Fig. 33. Homogenous zones resulting from the clustering analysis of VIs, 
calculated based on ρ, for two study areas. Reflectance was measured at canopy 
height using an ACS-430 active sensor. The studied areas were cropped with 
Cabernet Franc and Cabernet Sauvignon vines 

Source: Costa et al. (2019). 

 

 

3.2.8. Used variables for delineating Management Zones 

 

Satellite imagery data 

 

Zhang et al. (2010) developed a web-based decision support tool to 

automatically determine the optimal number of MZs and delineate them using 

satellite imagery and field data. In this tool, currently discontinued, application 

rates, such as fertilizer, could be prescribed for each zone and downloaded in 

various formats to ensure compatibility with GNSS-enabled farming equipment. 

Fig. 34 shows results from a 45.3-ha field in Potter County, South Dakota, where 

the rotation of crops from 2003 to 2005 was corn, sunflowers, and spring wheat. 

The farmer delineated four subfield zones (Fig. 34c) using a 2003-yield map (Fig. 

34a) and a 25-August-2004-Landsat NDVI map (Fig. 34b) to determine urea 

application rates for the next year. As a result of this variable-rate application, the 

spring wheat planted in 2005 delivered a much more uniform yield (Fig. 34d). 

While the mean yields of each crop were about the same, 7.33 t ha-1 for corn and 

7.17 t ha-1 for spring wheat, the standard deviation was reduced from 1.93 t ha-1 

for corn in 2003 to 1.23 t ha-1 for spring wheat in 2005. 
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(a) (b) 

 

(c) (d) 

 

Fig. 34. Using the 2003 yield map of corn (a) and 2004 NDVI map by Landsat of 

August 25, 2004 (b), the farmer delineated the management zones (c) as a basis 

for the determination of variable rate fertilizer application resulting in a more 

uniform yield for 2005 spring wheat (d) 

Source: adapted from Zhang et al. (2010). 

 

 

Active canopy sensor data 

 

Chang et al. (2014) analyzed NDVI data at five growth stages of the 

tobacco growth cycle measured by using a GreenSeeker handheld crop sensor 

at the location of each sample point. Three soil properties (OM, AP, and Fe) and 

two stages of NDVI measured (NDVI_40 and NDVI_60) were the critical factors 

for the tobacco yield. They compared delineation two methods of MZs: (1) using 

soil properties (Fig. 35a); and (2) using tobacco RS data (Fig. 35b). They 

concluded that it is feasible to use an active canopy sensor to delineate MZs for 

tobacco-planting fields. 
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Fig. 35. Map of management zones based on soil properties (A) and NDVI 
measurements (B) 

Source: adapted from Chang et al. (2014). 

 

 

Yield data 

 

Arnó et al. (2005) used normalized yield maps from three years (2002, 

2003, and 2004) to delineate a reclassified yield map (zones, Fig. 36) in a parcel 

at Raimat (Lleida, Spain). 

 

 

Fig. 36. Yield management zones delineated using grape normalized yields 

Source: adapted from Arnó et al. (2005). 
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Topography, electrical conductivity, and soil properties 

 

Molin and Castro (2008) delineated MZs using ECa and eleven other soil 

properties (P, OM, pH, K, Ca, Mg, SB (sum of bases), CEC (cation exchange 

capacity), V% (base saturation), Clay, and Sand) in a 35.8-ha area, located in 

Southen Brazil. PCA was used to group variables, and FCM was used to 

delineate MZs (Fig. 37). Results had confirmed the utility of ECa in the definition 

of MZs and the feasibility of the proposed method. 

 

  

Fig. 37. Shallow (0 – 0.3 m) and deep-reading (0 – 0.9 m) soil EC maps, soil clay 

and sand content maps, and Management zones 

Source: adapted from Molin and Castro (2008). 

 

Jaynes et al. (2005) applied cluster analysis of five-year soybean (Glycine 

max [L.] Merr.) yield to partition a field into a few groups or clusters with similar 

temporal yield patterns and investigated the relationships between these yield 

clusters and the easily measured and derived properties (elevation, E; slope, SL; 

plan curvature, PL; aspect, AS; and depression depth, DD) and ECa (Fig. 38). 

The terrain attributes SL, PL, AS, DD, and ECa effectively identified yield cluster 

membership for 80% of the 224 transect plots. 
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Fig. 38. Soybean-yield cluster classification for the 224 transect plots overlaid on 
the elevation contours (a) and the predicted yield zones (b). Transect plots are 
shown 3× actual width for better visibility. 

Source: adapted from Jaynes et al. (2005). 

 

 

3.2.9. Methods for selecting the variables used in the clustering process 

 

 

Spatial correlation analysis 

 

Bazzi et al. (2013) used the physical and chemical properties of soil and 

yield from a 19.8-ha commercial farming area in Brazil to delineate MZs by the 

FCM algorithm (Fig. 39). The division of the area into two MZs was considered 

appropriate since it provided distinct averages of most soil properties and yields. 

 

 

Fig. 39. Division of the area into management zones using the Fuzzy C-means 
algorithm with variables selected with the spatial correlation matrix approach. 

Source: Bazzi et al. (2013). 
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Principal component analysis 

 

Molin and Castro (2008) sampled ECa and eleven other soil properties in 

a 35.8-ha area located in Southen Brazil, aiming to delineate MZs with these 

variables. PCA was used to group variables, and FCM classification was used for 

clustering the transformed variables (Fig. 40). The results confirmed the utility of 

ECa in the definition of MZs and the feasibility of the proposed method. 

 

 

Fig. 40. Spatial distribution of participation function values for each individual in 
the three classes generated after classification by the fuzzy-k-means algorithm 
of two principal components selected and a corresponding map showing the 
resulting management zones. 

Source: Molin and Castro (2008). 

 

Multivariate spatial analysis based on Moran’s index PCA (MULTISPATI-

PCA) 

 

Córdoba et al. (2016) delineated MZs with ECa, elevation, and soil depth 

as input variables. The MZs were validated using yield, OM, and clay. The field 

was a rain-fed wheat crop (60 ha) from the Argentine Pampas. They used 

MULTISPATI-PCA for grouping variables and the FCM clusterization technique 

and concluded that the best classification was with two zones (Fig. 41). 
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Fig. 41. Map with two (left), three (center), and four (right) within-field 
management classes 

Source: Córdoba et al. (2016). 

 

Comparing methods for selecting the variables 

 

Gavioli et al. (2016) compared the efficiency of six techniques variable 

selection techniques: (1) All-Attributes: no disposal of stable variables; (2) 

Spatial-Matrix (Spatial correlation analysis); (3) PCA-All (traditional PCA); (4) 

MPCA-All (traditional MULTISPATI-PCA); (5) PCA-SC (PCA applied only on the 

stable variables that showed significant spatial correlation with the yield); and (6) 

MPCA-SC (MPCA applied only on the stable variables that showed significant 

spatial correlation with the yield). The methods were used in conjunction with the 

FCM clustering method using data collected from 2010 to 2014 from three 

agricultural areas in Southern Brazil. The delineated MZs are presented in Fig. 

42. They founded that MPCA-SC provided the best performance defining MZs, 

with greater internal homogeneity, making them more viable for field 

management.  
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Fig. 42. Managements zones generated by the six approaches: (1) All-Attrib; (2) 
Spatial-Matrix; (3) PCA-All; (4) MPCA-All; (5) PCA-SC; (6) MPCA-SC 

Source: Gavioli et al. (2016). 

 

3.2.10. Methods for delineating Management Zones 

 

 

Gavioli et al. (2018), with data obtained between 2010 and 2015 in three 

commercial agricultural fields cultivated with soybean and corn in Brazil, 

evaluated the use of 20 clustering algorithms presented to delineate these 

subareas: Average Linkage, Bagged Clustering, Centroid Linkage, Clara, 

Complete Linkage, Diana, Fanny, FCM, Fuzzy C-shells, Hard Competitive 

Learning, Hybrid Hierarchical Clustering, K-means, McQuitty’s Method, Median 

Linkage, Neural Gas, Partitioning Around Medoids, Single Linkage, Spherical K-

means, Unsupervised Fuzzy Competitive Learning and Ward’s Method. Figure 

36 presents the MZs Maps of the MZs delineated with the application of 17 (three 

were discarded, Table 10) clustering algorithms for the three fields. McQuitty’s 

Method and Fanny were considered the best algorithm because they produced 

the most significant reductions in the variance of yield in the three fields. In 

addition, these methods generated classes with high internal homogeneity and 

delimited MZs without spatial fragmentation (suitable for field operations). The 

classic FCM and K-means developed significantly different subareas in only two 

fields, in which the obtained results were similar to the results of McQuitty’s 

Method and Fanny (Fig. 43). 
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Fig. 43. Maps of the management zones delineated with the application of 17 
clustering algorithms for the three fields 

Source: Gavioli et al. (2018). 
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Table 10. Clustering methods implemented and compared for the definition of 
MZs 

 

Source: Gavioli et al. (2018). 

 

 

3.2.11. Rectification of Management Zones 

 

Albornoz et al. (2018) developed a user-friendly automatic software that 

integrated all steps to delineate MZs and make prescription files. A careful 

combination of options in the automatic post-processing methods was selected 

to reduce fragmentation, including a mode filter with a 7 x 7 mask, erosion and 

dilation filter, and the fusion of areas smaller than a minimum size of 0.5 ha. 

These procedures allow removal of all the isolated small areas and improve the 

border definition and compactness of the zones delineated (Fig. 44). 
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(a) 

 

(b) 

Fig. 44. Zones fragmentation for the delineated management zones (Site 1) 

before (a) and after (b) the automatic filtering post-processing techniques 

Source: adapted from Albornoz et al. (2018). 

 

 

3.2.12. Evaluation of the quality of Management Zones 

 

 

Analysis of Variance, Variance Reduction, Fuzziness Performance Index, 

Modified Partition Entropy, Smoothness Index, and Improved Cluster 

Validation Index  

 

As reported before, Gavioli et al. (2016) compared the efficiency of six 

techniques variable selection techniques (All-Attrib, Spatial-Matrix, PCA-All, 

MPCA-All, PCA-SC, and MPCA-SC) using the indices VR, FPI, MPE, SI, ICVI 

and ANOVA (Table 11). The first analysis to be made is Tukey's range test to 

discard ZMs whose target variable means (in this case yield) are not all 

statistically distinct. As a result, for field A, one has to consider that it is only 

advisable to divide it into two ZMs, and the approach all-Attributes is not advised. 

Regarding the indices, the higher RV and SI, and the lower FPI, MPE, and ICVI, 

the better the MZs; this implies that for area A, the best approach was the Spatial-

Matrix.  
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Table 11. Results for ANOVA (Tukey’s range test), VR, FPI, MPE, SI, and ICVI, 
for field A 

 

significant at 0.05 confident level 

Source: Gavioli et al. (2016). 

 

 

Average silhouette coefficient (ASC) 

 

The indices FPI, MPE, SI, and ICVI cannot be used to evaluate MZs that 

were not delineated by the clustering process. In this case, a good choice is the 

coefficient ASC. As reported before, Gavioli et al. (2018) evaluated 20 clustering 

algorithms, and Table 12 presents the results of 17 methods (three were 

discarded) in the generation of two, three, and four classes for field A.  The quality 

of the clustering process was performed by the ANOVA (Tukey’s range test), VR 

index, and ASC coefficient. The Tukey’s range test (0.05 level) showed that it 

was possible to divide the field only with two classes. McQuitty yielded both the 

highest values for ASC and VR but FCM and K-means also had similar 

performance.  
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Table 12. Results of the evaluation of the clustering methods in the generation of 
two, three and four classes by the ANOVA (Tukey’s range test), VR index and 
ASC coefficient, for field A 

C1 C2 VR% ASC C1 C2 C3 VR% ASC C1 C2 C3 C4 VR% ASC

Average Linkage a b 15.9 0.55 a b b 18.4 0.45 a ab bc c 20.6 0.46

Bagged Clustering a b 16.7 0.58 a b b 36.3 0.45 a b ab b 21.3 0.55

Centroid Linkage a b 18.2 0.57 a ab b 20.4 0.45 a a a a 0 0.41

Clustering Large Applications a b 21 0.59 a b b 25.3 0.47 a ab b b 19.5 0.55

Complete Linkage a a 9.5 0.55 a ab b 15 0.46 a ab b b 22.2 0.38

Fuzzy Analysis Clustering (Fanny) a b 21.2 0.59 a b b 30.2 0.46 a ab c bc 29.6 0.39

Fuzzy C-means (FCM) a b 34.1 0.59 a b b 35.5 0.46 a a b b 35.6 0.54

Hard Competitive Learning a b 21.6 0.59 a a b 26.2 0.46 a b ab b 19.9 0.54

Hybrid Hierarchical Clustering a b 21.6 0.59 a a b 21.4 0.48 a ab b b 21.5 0.38

K-means a b 33.8 0.59 a b a 23.8 0.46 a a b b 35.8 0.39

McQuitty's Method (McQuitty) a b 39.2 0.59 a b b 38.3 0.43 a ab c bc 37.4 0.35

Median Linkage a b 16.2 0.56 a b b 14.4 0.42 a ab bc c 13.2 0.33

Neural Gas a b 21.4 0.59 a b a 25.8 0.46 ac b c ab 29.7 0.38

Partitioning Around Medoids a b 20.9 0.59 a b b 29.3 0.46 a ab b b 23.5 0.54

Spherical K-means a b 22.4 0.59 a b a 41.6 0.47 a b b a 46.9 0.49

Unsupervised Fuzzy Competitive 

Learning
a b 21.7 0.59 a b b 25.8 0.46 a ab bc c 30.7 0.39

Ward's Method a b 19.8 0.58 a a b 21.3 0.47 a ab c bc 29.3 0.54

Method

2 classes 3 classes 4 classes

 

Ci: class i; VR: variance reduction index; ASC: average silhouette coefficient. 

Source: Gavioli et al. (2018) 

 

Kappa coefficient 

 

The Kappa coefficient (K) is applied to measure the degree of agreement 

among MZ maps generated by the clustering algorithms. As reported before, 

Kitchen et al. (2005) compared the productivity zones (SPZ) delineated using 

ECa and elevation with the ones delineated from yield map data (YPZ, Fig. 21). 

Using K, they found a 60–70% agreement between YPZ and SPZ. They 

considered this level of agreement promising, especially considering many other 

yield-limiting factors unrelated to ECa and elevation. 

 

Coefficient of relative deviation and mean absolute difference  

 

Souza et al. (2016) studied the influence of three interpolation methods 

(i.e., the inverse of distance, inverse of square distance, and the ordinary kriging) 

commonly used in developing yield maps. They found out that mean absolute 

difference (MAD) varied from 0.04 to 0.32 t ha-1 and corresponded to a relative 

deviation (CRD) from 1.20 to 7.53%, meaning that the management decisions 

can differ in some cases on the type of interpolation implemented. 
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