

I EAICTI I Encontro Anual de Iniciação Científica, Tecnológica e Inovação

"CARACTERIZAÇÃO COMPOSICIONAL DO QUEIJO COLONIAL"

Anna Caroline GAMBARO (PIBIC/Fundação Araucária/Unioeste); Luciana Bill M. KOTTWITZ (Orientador) Ana Cláudia Malagutti CORSATO, Luciana Oliveira de FARIÑA; lukottwitz@yahoo.com.br.

Universidade Estadual do Oeste do Paraná/Centro de Ciências Médicas e Farmacêuticas/Cascavel,PR.

Área e subárea: Ciências Agrárias – Tecnologia de Alimentos

Palavras-chave: queijo colonial; físico-química; padrão de identidade e qualidade;

Resumo

No Sul do Brasil, a produção artesanal de queijo colonial é relevante, servindo como importante alternativa para pequenos produtores rurais, que utilizam essa atividade para incrementar a renda familiar. A composição físico-química e microbiana pode variar de acordo com a região geográfica onde este é produzido, podendo se atribuir variações em razão do leite utilizado, do clima, das estações do ano e dos métodos empregados no processamento. O objetivo deste trabalho foi avaliar a diversidade composicional de 12 amostras de queijos coloniais, elaborados por diferentes produtores de Santa Catarina. As análises compreenderam a avaliação dos teores de umidade, proteínas, cinzas, lipídeos, carboidratos e determinação do pH e da acidez. O resultado médio para umidade foi de 40,81%, caracterizando os queijos produzidos como de "média umidade". Os teores médios de proteínas e gorduras foram de 25,37% e 22,68%, respectivamente. A acidez variou entre 0,08% a 0,35% e o pH, entre 4,9 e 6,1. Os resultados obtidos demonstraram que houve diferença significativa (p>0,05) entre todas as amostras avaliadas, bem como para a maioria dos parâmetros analisados, caracterizando diversidade na produção do queijo colonial. Considerando a importância da produção e consumo destes produtos, é necessária a padronização do processo produtivo, estabelecendo padrões de identidade e qualidade com a finalidade de garantir aos consumidores queijos com qualidade nutricional adequada.

Introdução

O queijo colonial é um alimento artesanal que se destaca no cenário brasileiro por apresentar alto valor nutritivo em função de sua composição química, e também pelas suas características sensoriais, que vêm conquistando o paladar do consumidor e contribuindo para o aumento expressivo na sua produção e consumo (Oliveira *et al.*, 2010).

Data: 21 a 23 de outubro de 2015 Local: Unioeste - Campus de Cascavel

I EAICTI I Encontro Anual de Iniciação Científica, Tecnológica e Inovação

A composição físico-química e microbiana de cada tipo de queijo varia de acordo com a região geográfica onde este é produzido, podendo se atribuir variações em razão do leite utilizado, do clima, das estações do ano e dos métodos empregados no processamento (Hermanns *et al.*, 2014).

Assim, considerando a importância da produção de queijos artesanais e os fatores que podem influenciar na sua qualidade, este trabalho teve por objetivo realizar a caracterização composicional de queijos coloniais produzidos por diferentes produtores rurais do estado de Santa Catarina.

Materiais e Métodos

No período de agosto de 2014 a maio de 2015 foram avaliadas 12 amostras de queijos coloniais, provenientes de diferentes produtores rurais de Santa Catarina. As amostras foram analisadas em triplicata no Laboratório de Alimentos da UNIOESTE/Cascavel/PR, após preparo em processador.

As análises composicionais de umidade, cinzas, proteínas e determinação do pH e acidez, foram realizadas utilizando as metodologias descritas na Instrução Normativa nº 68/2006, do Ministério da Agricultura, Pecuária e Abastecimento - MAPA (BRASIL, 2006).

Os resultados obtidos foram submetidos à análise de variância (ANOVA) e teste Tukey ao nível de 5% de probabilidade, para verificar diferenças entre as médias, utilizando-se o programa estatístico SISVAR versão 5.3 Build 77.

Resultados e Discussão

Os resultados médios das análises composicionais e físico-químicas das amostras de queijo colonial estão representados na Tabela 1.

Os teores médios de umidade nas amostras analisadas, variaram entre 33,87 a 49,28%, com média de 40,81% (Tabela 1), caracterizando-as como queijo de "média umidade", considerando os parâmetros descritos na Portaria nº146/1996 (BRASIL, 1996) para os padrões de identidade e qualidade para queijos no Brasil, que estabelece valores de umidade entre 36,0 e 45,9%, para esta classificação. Resultados médios semelhantes foram encontrados por Mousquer (2007) que, ao avaliar queijos coloniais produzidos no município de Matelândia/PR, verificou valores médios de umidade de 39,38%.

O teor de cinzas ou resíduo mineral fixo avaliado no presente estudo, obteve valores médios entre 2,71% e 5,71%, não havendo diferença significativa entre as amostras avaliadas (p<0,05) (Tabela 1). Estes resultados estão de acordo com Oliveira et al. (2010), que descrevem que os percentuais de cinzas para queijos produzidos a partir de leite cru devem estar entre 1,0 e 6,0%.

O percentual médio de proteínas observado foi de 25, 37% (Tabela 1). Estes resultados estão de acordo com estabelecido pela Portaria 146/1996, que padroniza o percentual de proteínas em queijos entre 20% e 30% (BRASIL, 1996).

Data: 21 a 23 de outubro de 2015 Local: Unioeste - Campus de Cascavel

I EAICTI I Encontro Anual de Iniciação Científica, Tecnológica e Inovação

Tabela 1: Resultados médios, desvio padrão e coeficiente de variação da composição e parâmetros físico-químicos estudados nos queijos coloniais de estado de Santa Catarina.

Am.	рН	ACID	UMD	PRO	RMF	GOR
1	5,30 ^b (0,05)	0,19 ^{bc} (0,04)	35,04 ^a (0,78)	27,61 ^{abc} (1,30)	5,69 ^a (0,53)	19,66 ^{ab} (1,53)
ı	(0,05)		(0,76)	(1,30)	(0,53)	(1,55)
	4,80 ^a	0,27 ^{def}	49,28 ^c	21,84 ^a	4,18 ^a	20,83 ^{abc}
2	(0,05)	(0,04)	(1,36)	(0,29)	(0,12)	(0,76)
	6,10 ^d	0,08 ^a	47,18 ^c	21,41 ^a	5,71 ^a	16,33 ^a
3	(0,05)	(0,005)	(2,03)	(0,56)	(0,71)	(1,15)
	5,60°	0,11 ^{ab}	45,84 ^c	25,23 ^{abc}	3,61 ^a	20,66 ^{abc}
4	(0,05)	(0,02)	(1,73)	(0,66)	(1,93)	(0,57)
	5,20 ^b	0,24 ^{cde}	46,27 ^c	25,92 ^{abc}	4,00 ^a	23,76 ^{bc}
5	(0,05)	(0,006)	(0,39)	(1,56)	(0,04)	(4,57)
	5,40 ^{bc}	0,16 ^{abc}	36,89 ^{ab}	29,50 ^{bc}	2,71 ^a	19,67 ^{ab}
6	(0,01)	(0,04)	(0,18)	(0,06)	(0,30)	(1,53)
	5,30 ^b	0,18 ^{bc}	47,03 ^c	21,95 ^a	3,29 ^a	16,00 ^a
7	(0,15)	(0,03)	(0,72)	(2,15)	(0,21)	(1,73)
	4,90 ^a	0.35^{\dagger}	35,43 ^a	28,31 ^{abc}	3,12 ^a	19,33 ^{ab}
8	(0,05)	(0,01)	(2,37)	(3,68)	(0,96)	(1,15)
	5,30 ^b	0,17 ^{bc}	34,01 ^a	26,14 ^{abc}	4,15 ^a	30,83 ^e
9	(0,05)	(0,05)	(1,24)	(1,88)	(0,12)	(1,04)
	5,30 ^b	0,18 ^{bc}	33,87 ^a	30,47°	4,72 ^a	24,83 ^{cd}
10	(0,05)	(0,02)	(0,15)	(1,59)	(0,96)	(0,28)
	5,20 ^b	0,22 ^{cde}	38,14 ^{ab}	22,85 ^{bc}	3,71 ^a	29,16 ^{de}
11	(0,05)	(0,006)	(3,34)	(3,05)	(0,08)	(0,28)
	5,40 ^{bc}	0,28 ^{ef}	40,72 ^b	23,30 ^{ab}	3,49 ^a	31,16 ^e
12	(0,01)	(0,03)	(0,38)	(0,64)	(0,29)	(1,26)
MG	25,37	5,3	40,81	4,03	0,2	22,68
CV	7.1	1,25	3.9	26.45	13,81	7,53

^{*} Os resultados dos valores médios obtidos em triplicata;. Nível de significância p<0,05.

A análise de gordura registrou valores médios variando entre 16,33% e 31,16%, com média de 22,68%, havendo diferença significativa (p>0,05) entre as amostras analisadas (Tabela 1). Desta maneira, 75% (9/12) dos queijos analisados podem ser classificados como "magros", de acordo com a legislação (BRASIL, 1996).

Data: 21 a 23 de outubro de 2015 Local: Unioeste - Campus de Cascavel

AM. amostra; Média geral: MG. Teores percentuais (m/m): umidade (UMD); gordura (GOR); resíduo mineral fixo – cinzas (RMF); proteínas totais (PRO); carboidratos (CAR); potencial hidrogeniônico (pH) e acidez (ACID) Desvio padrão – $(\pm DP)$ Coeficiente de Variação (CV%).

I EAICTI I Encontro Anual de Iniciação <u>Científica,</u> Tecnológica e Inovação

A análise de acidez evidenciou valores entre 0,08% e 0,35% (Tabela 1), resultados estes diferentes do proposto por Queiroga et al. (2009), que indicam que a acidez ideal para queijos coloniais deve estar entre 0,03% e 0,04%.

Os resultados apresentados na tabela 1 demonstram que houve diferença significativa (p>0,05) entre todas as amostras avaliadas, bem como para a maioria dos parâmetros analisados. Somente o parâmetro de cinzas não indicou diferença significativa (p<0,05) entre as amostras.

Conclusões

A diversidade dos resultados das análises composicionais, observada neste estudo, refletem ausência na padronização do processo produtivo, indicando a necessidade de estabelecer critérios de identidade e qualidade de queijos coloniais como princípio para assegurar produtos com qualidade nutricional adequada.

Agradecimentos

À Fundação Araucária pela bolsa concedida e à Universidade Estadual do Oeste do Paraná pelo espaço ofertado para a realização das análises.

Referências

BRASIL. **Ministério da Agricultura Pecuária e Abastecimento.** Portaria n.146, de 7 de março de 1996. Aprova os Regulamentos Técnicos de Identidade e Qualidade dos Produtos Lácteos. 1996

BRASIL. Ministério da Agricultura Pecuária e Abastecimento. **Oficializar os Métodos Analíticos Oficiais Físico-Químicos, para Controle de Leite e Produtos Lácteos**. Instrução Normativa nº 68, de 12 de dezembro de 2006.

HERMANNS, G.; FUNCK, G. D.; SCHMIDT, J.T.; PEREIRA, J. Q.; BRANDELLI, A.; RICHARDS, N. S. P. DOS S. Evaluation of Probiotic Characteristics of Lactic Acid Bacteria Isolated from Artisan Cheese. *J. Food Safety*, v. **34**, p. 380-387, 2014.

MOUSQUER, E. C. Aspectos de composição e avaliação das condições gerais de produção do queijo colonial por agricultores familiares na região oeste do Paraná. Monografia. Especialização. Universidade Estadual do Oeste do Paraná, 2007.

OLIVEIRA, D. F.; BRAVO, C. E. C.; BADARÓ, A. C. L.; TONIAL, I. B. Análise da composição físico-química, conteúdo lipídico e qualidade higiênico-sanitária de queijos coloniais. In: Anais do XXVII Congresso Nacional de Laticínios, Juiz de Fora, MG. 2010

Local: Unioeste - Campus de Cascavel